8 resultados para Magnetic spectrometer
em Publishing Network for Geoscientific
Resumo:
The sediment record from Rodderberg potentially provides a climate and environmental record spanning at least the last ca 130 ka. Results from a low resolution pilot study reveal characteristic fluctuations that can be related to global climate variability as reflected in marine isotope stages and document the potential of this site for continuous and high-resolution investigations of the Middle to Late Pleistocene. Here we document the tentative lithology drilled, and show how the elemental composition can be interpreted with regard to lake level fluctuations, related redox conditions, but also to grain-size distribution and changes in lacustrine productivity. Finally, based on major lithological changes, a preliminary depth/age model is suggested that allows reassessing published luminescence ages from the same site.
Resumo:
Geochemical and mineralogical proxies for paleoenvironmental conditions have the underlying assumption that climate variations have an impact on terrestrial weathering conditions. Varying properties of terrigenous sediments deposited at sea are therefore often interpreted in terms of paleoenvironmental change. Also in gravity core GeoB9307-3 (18° 33.99' S, 37° 22.89' E), located off the Zambezi River, environmental changes during Heinrich Stadial 1 (HS 1) and the Younger Dryas (YD) are accompanied by changing properties of the terrigenous sediment fraction. Our study focuses on the relationship of variability in the hydrological system and changes in the magnetic properties, major element geochemistry and granulometry of the sediments. We propose that changes in bulk sedimentary properties concur with environmental change, although not as a direct response of climate driven pedogenic processes. Spatial varying rainfall intensities on a sub-basin scale modify sediment export from different parts of the Zambezi River basin. During humid phases, such as HS 1 and the YD, sediment was mainly exported from the coastal areas, while during more arid phases sediments mirror the hinterland soil and lithological properties and are likely derived from the northern Shire sub-basin. We propose that a de-coupling of sedimentological and organic signals with variable discharge and erosional activity can occur.
Resumo:
Deep marine successions of early Campanian age from DSDP site 516F drilled at low paleolatitudes in the South Atlantic reveal distinct sub-Milankovitch variability in addition to precession and eccentricity related variations. Elemental abundance ratios point to a similar 5 climatic origin for these variations and exclude a quadripartite structure - as observed in the Mediterranean Neogene - of the precession related cycles as an explanation for the inferred semi-precession cyclicity in MS. However, the semi-precession cycle itself is likely an artifact, reflecting the first harmonic of the precession signal. The sub-Milankovitch variability is best approximated by a ~ 7 kyr cycle as shown by 10 spectral analysis and bandpass filtering. The presence of sub-Milankovitch cycles with a period similar to that of Heinrich events of the last glacial cycle is consistent with linking the latter to low-latitude climate change caused by a non-linear response to precession induced variations in insolation between the tropics.
Resumo:
The chronostratigraphy of Guandao section has served as the foundation for numerous studies of the end-Permian extinction and biotic recovery in south China. Guandao section is continuous from the Permian-Triassic boundary to the Upper Triassic.Conodonts enable broad delineation of stage and substage boundaries and calibration of foraminifer biostratigraphy as follows. Changhsingian- Griesbachian: first Hindeodus parvus, and first appearance of foraminifers Postcladella kalhori and Earlandia sp. Griesbachian-Dienerian: first Neospathodus dieneri, and last appearance of foraminifer P. grandis. Dienerian-Smithian: first Novispathodus waageni and late Dienerian first appearance of foraminifer Hoyenella ex gr. sinensis. Smithian-Spathian: first Nv? crassatus and last appearance of foraminifers Arenovidalina n. sp. and Glomospirella cf. vulgaris. Spathian-Aegean: first Chiosella timorensis and first appearance of foraminifer Meandrospira dinarica. Aegean-Bithynian: first Nicoraella germanica and first appearance of foraminifer Pilammina densa. Bithynian-Pelsonian: after last Neogondolella regalis, prior to first Paragondolella bulgarica and first appearance of foraminifer Aulotortus eotriasicus. Pelsonian-Illyrian: first Pg. excelsa and last appearance of foraminifers Meandrospira ? deformata and Pilamminella grandis. Illyrian-Fassanian: first Budurovignathus truempyi, and first appearance of foraminifers Abriolina mediterranea and Paleolituonella meridionalis. Fassanian-Longobardian: first Bv. mungoensis and last appearance of foraminifer A. mediterranea. Longobardian-Cordevolian: first Quadralella polygnathiformis and last appearance of foraminifers Turriglomina mesotriasica and Endotriadella wirzi. The section contains primary magnetic signature with frequent reversals occurring around the Permian-Triassic, Olenekian-Anisian, and Anisian-Ladinian boundaries. Predominantly normal polarity occurs in the lower Smithian, Bithynian, and Longobardian-Cordevolian. Predominantly reversed polarity occurs in the upper Griesbachian, Induan-Olenekian, Pelsonian and lower Illyrian. Reversals match well with the GPTS. Large amplitude carbon isotope excursions, attaining values as low as -2.9 per mil d13C and high as +5.7 per mil d13C, characterize the Lower Triassic and basal Anisian. Values stabilize around +2 per mil d13C through the Anisian to Carnian. Similar signatures have been reported globally. Magnetic susceptibility and synthetic gamma ray logs show large fluctuations in the Lower Triassic and an overall decline in magnitude of fluctuation through the Middle and Upper Triassic. The largest spikes in magnetic susceptibility and gamma ray, indicating greater terrestrial lithogenic flux, correspond to positive d13C excursions. Several volcanic ash horizons occur in the Lower Triassic and Olenekian-Anisian boundary. High resolution U-Pb analysis of zircons provide a robust age of 247.2 Ma for the Olenekian-Anisian boundary.
Resumo:
Two gravity cores retrieved off NW Africa at the border of arid and subtropical environments (GeoB 13602-1 and GeoB 13601-4) were analyzed to extract records of Late Quaternary climate change and sediment export. We apply End Member (EM) unmixing to 350 acquisition curves of isothermal remanent magnetization (IRM). Our approach enables to discriminate rock magnetic signatures of aeolian and fluvial material, to determine biomineralization and reductive diagenesis. Based on the occurrence of pedogenically formed magnetic minerals in the fluvial and aeolian EMs, we can infer that goethite formed in favor to hematite in more humid climate zones. The diagenetic EM dominates in the lower parts of the cores and within a thin near-surface layer probably representing the modern Fe**2+/Fe**3+ redox boundary. Up to 60% of the IRM signal is allocated to a biogenic EM underlining the importance of bacterial magnetite even in siliciclastic sediments. Magnetosomes are found well preserved over most of the record, indicating suboxic conditions. Temporal variations of the aeolian and fluvial EMs appear to faithfully reproduce and support trends of dry and humid conditions on the continent. The proportion of aeolian to fluvial material was dramatically higher during Heinrich Stadials, especially during Heinrich Stadial 1. Dust export from the Arabian-Asian corridor appears to vary contemporaneous to increased dust fluxes on the continental margin of NW Africa emphasizing that melt-water discharge in the North Atlantic had an enormous impact on atmospheric dynamics.
Resumo:
Here we present a case study of three cold-water coral mounds in a juvenile growth stage on top of the Pen Duick Escarpment in the Gulf of Cadiz; Alpha, Beta and Gamma mounds. Although cold-water corals are a common feature on the adjacent cliffs, mud volcanoes and open slope, no actual living cold-water coral has been observed. This multidisciplinary and integrated study comprises geophysical, sedimentological and (bio)geochemical data and aims to present a holistic view on the interaction of both environmental and geological drivers in cold-water coral mound development in the Gulf of Cadiz. Coring data evidences (past or present) methane seepage near the Pen Duick Escarpment. Several sources and pathways are proposed, among which a stratigraphic migration through uplifted Miocene series underneath the escarpment. The dominant morphology of the escarpment has influenced the local hydrodynamics within the course of the Pliocene, as documented by the emplacement of a sediment drift. Predominantly during post-Middle Pleistocene glacial episodes, favourable conditions were present for mound growth. An additional advantage for mound formation near the top of Pen Duick Escarpment is presented by seepage-related carbonate crusts which might have offered a suitable substrate for coral settling. The spatially and temporally variable character and burial stage of the observed open reef frameworks, formed by cold-water coral rubble, provides a possible model for the transition from cold-water coral reef patches towards juvenile mound. These rubble "graveyards" not only act as sediment trap but also as micro-habitat for a wide range of organisms. The presence of a fluctuating Sulphate-Methane Transition Zone has an important effect on early diagenetic processes, affecting both geochemical and physical characteristics, transforming the buried reef into a solid mound. Nevertheless, the responsible seepage fluxes seem to be locally variable. As such, the origin and evolution of the cold-water coral mounds on top of the Pen Duick Escarpment is, probably more than any other NE Atlantic cold-water coral mound province, located on the crossroads of environmental (hydrodynamic) and geological (seepage) pathways.
Resumo:
Site 810 was drilled atop Shatsky Rise during Ocean Drilling Program (ODP) Leg 132. The principal objective at Site 810 was to drill interbedded cherts and chalks of Mesozoic age using the diamond coring system (DCS). The objective was not achieved because of difficulties in setting up the reentry cone on the seafloor; however, a shortened section of Cretaceous-Cenozoic nannofossil ooze was recovered with the advanced piston corer (APC). Although the section is interrupted by hiatuses, the upper 50 m carry detailed information relating to biogenic productivity, water chemistry, and eolian input during the Pliocene and Pleistocene. Four holes were drilled at Site 810. Hole 810A consists of a single mud-line core for an ongoing ODP geriatric study. The second hole (Hole 810B) was washed to 60 mbsf (without core recovery) to provide information required for setting the 16-in. casing attached to the reentry cone. Hole 810C penetrated 136.1 mbsf, mostly with the APC, with a total recovery of 143.81 m of nannofossil ooze. A reentry cone was placed over Hole 810D but no casing was successfully suspended in the hole and no sediment was cored. This data report presents the results of shore-based high-resolution analyses of carbonate and oxygen isotopic variations in the upper 50 m of the section at Site 810 and compares these variations with the shipboard determinations of magnetic susceptibility and GRAPE bulk density from the multisensor track.