6 resultados para Magnetic elements

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leg 140 of the Ocean Drilling Program deepened Hole 504B to a total depth of 2000.4 m below seafloor (mbsf), making it the deepest hole drilled into ocean crust. Site 504, south of the Costa Rica Rift, is considered the most important in-situ reference section for the structure of shallow ocean crust. We present the results of studies of magnetic mineralogy and magnetic properties of Hole 504B upper crustal rocks recovered during Legs 137 and 140. Results from this sample set are consistent with those discussed in Pariso et al. (this volume) from Legs 111, 137, and 140. Coercivity (Hc) ranges from 5.3 to 27.7 mT (mean 12 mT), coercivity of remanence (HCR) ranges from 13.3 to 50.6 mT (mean 26 mT), and the ratio HCR/HC ranges from 1.6 to 3.19 (mean 2.13). Saturation magnetization (JS) ranges from 0.03 to 5.94 * 10**-6 Am**2, (mean 2.52 * 10**-6 Am**2), saturation remanence (JR) ranges from 0.01 to 0.58 * 10**-6 Am2 (mean 0.37 * 10**-6 Am**2), and the ratio JR/JS ranges from 0.08 to 0.29 (mean 0.16), consistent with pseudo-single-domain behavior. Natural remanent magnetization (NRM) intensity ranges from 0.029 to 7.18 A/m (mean 2.95 A/m), whereas RM10 intensity varies only from 0.006 to 4.8 A/m and has a mean of only 1.02 A/m. Anhysteretic remanent magnetization (ARM) intensity ranges from 0.04 to 6.0 A/m, with a mean of 2.46 A/m, and isothermal remanent magnetization (IRM) intensity ranges from 0.5 to 1683 A/m, with a mean of 430.7 A/m. Volume susceptibility ranges from 0.0003 to 0.043 SI (mean 0.011 SI). In all samples examined, high-temperature oxidation of primary titanomagnetite has produced lamellae or pods of magnetite and ilmenite. Hydrothermal alteration has further altered the minerals in some samples to a mixture of magnetite, ilmenite, titanite, and a high-titanium mineral (either rutile or anatase). Electron microprobe analyses show that magnetite lamellae are enriched in the trivalent oxides Cr2O3, Al2O3, and V2O5, whereas divalent oxides (MnO and MgO) are concentrated in ilmenite lamellae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four chemically distinct basalts were cored in 44 m of basement penetration at Deep Sea Drilling Project Site 543, in Upper Cretaceous crust just seaward of the deformation front of the Barbados Ridge and north of the Tiburon Rise. All four types are moderately fractionated abyssal tholeiites. The four types have different magnetic inclinations, all of reversed polarity, suggesting eruption at different times which recorded secular variation of the earth's magnetic field. Extensive replacement of Plagioclase by K-feldspar has occurred at the top of the basalts, giving analyses with K2O contents up to 5 %. The earliest stages of alteration were dominantly oxidative, resulting in fractures lined with celadonite and dioctahedral smectite, and pervasive replacement of olivine and most intersertal glass with iron hydroxides and green clay minerals. Latef, non-oxidative alteration resulted in formation of olive-green clays and pyrite veins in a portion of the rocks. Basalts affected by this alteration actually lost K2O (to abundances lower than in adjacent fresh basalt glasses), and gained MgO (to abundances higher than in the glasses). Finally, fractures and interpillow voids were lined with calcite, sealing in much fresh glass. Oxygen-isotope measurements on the calcite indicate that this occurred at 12 to 25C. Either altering fluids were warm or the basalts had become buried with a considerable thickness of sediments, such that temperatures increased until a conductive thermal gradient was established, when the veining occurred.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present sediment magnetic and chemical analysis of cyclic ocean sediments of the upwelling region of the Lower Congo Basin (equatorial Atlantic). We investigated two >100-k.y. intervals from Ocean Drilling Program Site 1075 to analyze the hysteresis properties, sources of magnetic susceptibility, anhysteretic remanent magnetizations, thermomagnetic behavior, and element concentrations of Fe, Ca, Ti, Mn, and K using an X-ray fluorescence (XRF) core scanner. The upper interval was sampled between 14 and 32 meters composite depth (mcd; 0.09-0.21 Ma) and the lower between 141 and 163 mcd (1.31-1.54 Ma) at a resolution of 20 cm, which represents a temporal resolution of 2.0 and 1.3 k.y., respectively. XRF core-scanner data were acquired at 5-cm intervals. The measurements show that ferri(o)magnetic minerals have no significant influence on the cyclicity of the magnetic susceptibility, which is dominated by paramagnetic and diamagnetic minerals and reflects changes of sediment input from the Congo River. The Fe, Ti, K, and Mn concentrations covary with the magnetic susceptibility where high concentrations of these elements correlate with intervals of high susceptibility and low concentrations with intervals of low susceptibility. The Ca counts correlate well with the calcium carbonate concentration but do not show the same cyclicity as the other elements or the susceptibility. With the exception of the Ca concentration, which is significantly higher in the upper interval, and the magnetic grain size, which indicates that less fine grained magnetite is present in the lower interval, no significant differences in the properties of the upper and the lower intervals were detected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigation of the Middle Miocene-Pleistocene succession in cores at ODP Site 817A (Leg 133), drilled on the slope south of the Queensland Plateau, identified the various material fluxes contributing to sedimentation and has determined thereby the paleogeographic events which occurred close to the studied area and influenced these fluxes. To determine proportions of platform origin and of plankton origin of carbonate mud, two reference sediments were collected: (1) back-reef carbonate mud from the Young Reef area (Great Barrier Reef); and (2) Late Miocene chalk from the Loyalty Basin, off New Caledonia. Through their biofacies and mineralogical and geochemical characters, these reference sediments were used to distinguish the proportions of platform and basin components in carbonate muds of 25 core samples from Hole 817A. Two "origin indexes" (i1 and i2) relate the proportion in platform and basin materials. The relative sedimentation rate is inferred from the high-frequency cycles determined by redox intervals in the cores. Bulk carbonate deposited in each core has been calculated in two ways with close results: (1) from calcimetric data available in the Leg 133 preliminary reports (Davies et al., 1991); and (2) from average magnetic susceptibility of cores, a value negatively correlated to the average carbonate content. Vertical changes in sedimentation rates, in carbonate content, in origin indexes and in "linear fluxes" document the evolution of sediment origins from platform carbonates, planktonic carbonates and insoluble material through time. These data are augmented with the variations in organic-matter content through the 817A succession. The observed changes and their interpretation are not modified by compaction, and are compatible with major paleogeographic events including drowning of the Queensland Plateau (Middle Miocene-Early Pliocene) and the renewal of shallow carbonate production, (1) during the Late Pliocene, and (2) from the Early Pleistocene. The birth and growth of the Great Barrier Reef is also recorded from 0.5 Ma by a strengthening of detrital carbonate deposition and possibly by a lack of clay minerals in the 4 upper cores, a response to trapping of terrigenous material behind this barrier. In addition, a maximum of biological silica production is displayed in the Middle Miocene. These changes constrain the time of events and the sequence-stratigraphy framework some components of which are transgression surface, maximum flooding surface and low-stand turbidites. Sedimentation rates and material fluxes show cycles lasting 1.75 Myr. Whatever their origin (climatic and/or eustatic) these cycles affected the planktonic production primarily. The changes also show that major carbonate variations in the deposits are due to a dilution effect by insoluble material (clay, biogenic silica and volcanic glasses) and that plankton productivity, controlling the major fraction of carbonate sedimentation, depends principally on terrigenous supplies, but also on deep-water upwelling. Accuracy of the method is reduced by redeposition, reworking, and probable occurrence of hiatuses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mineralogical, geochemical, magnetic, and siliciclastic grain-size signatures of 34 surface sediment samples from the Mackenzie-Beaufort Sea Slope and Amundsen Gulf were studied in order to better constrain the redox status, detrital particle provenance, and sediment dynamics in the western Canadian Arctic. Redox-sensitive elements (Mn, Fe, V, Cr, Zn) indicate that modern sedimentary deposition within the Mackenzie-Beaufort Sea Slope and Amundsen Gulf took place under oxic bottom-water conditions, with more turbulent mixing conditions and thus a well-oxygenated water column prevailing within the Amundsen Gulf. The analytical data obtained, combined with multivariate statistical (notably, principal component and fuzzy c-means clustering analyses) and spatial analyses, allowed the division of the study area into four provinces with distinct sedimentary compositions: (1) the Mackenzie Trough-Canadian Beaufort Shelf with high phyllosilicate-Fe oxide-magnetite and Al-K-Ti-Fe-Cr-V-Zn-P contents; (2) Southwestern Banks Island, characterized by high dolomite-K-feldspar and Ca-Mg-LOI contents; (3) the Central Amundsen Gulf, a transitional zone typified by intermediate phyllosilicate-magnetite-K-feldspar-dolomite and Al-K-Ti-Fe-Mn-V-Zn-Sr-Ca-Mg-LOI contents; and (4) mud volcanoes on the Canadian Beaufort Shelf distinguished by poorly sorted coarse-silt with high quartz-plagioclase-authigenic carbonate and Si-Zr contents, as well as high magnetic susceptibility. Our results also confirm that the present-day sedimentary dynamics on the Canadian Beaufort Shelf is mainly controlled by sediment supply from the Mackenzie River. Overall, these insights provide a basis for future studies using mineralogical, geochemical, and magnetic signatures of Canadian Arctic sediments in order to reconstruct past variations in sediment inputs and transport pathways related to late Quaternary climate and oceanographic changes.