7 resultados para METABASITES GEOCHEMISTERY

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Shackleton Range of East Antarctica, garnet-bearing ultramafic rocks occur as lenses in supracrustal high-grade gneisses. In the presence of olivine, garnet is an unmistakable indicator of eclogite facies metamorphic conditions. The eclogite facies assemblages are only present in ultramafic rocks, particularly in pyroxenites, whereas other lithologies - including metabasites - lack such assemblages. We conclude that under high-temperature conditions, pyroxenites preserve high-pressure assemblages better than isofacial metabasites, provided the pressure is high enough to stabilize garnet-olivine assemblages (i.e. >=18-20 kbar). The Shackleton Range ultramafic rocks experienced a clockwise P-T path and peak conditions of 800-850 °C and 23-25 kbar. These conditions correspond to ~70 km depth of burial and a metamorphic gradient of 11-12 °C/km that is typical of a convergent plate-margin setting. The age of metamorphism is defined by two garnet-whole-rock Sm-Nd isochrons that give ages of 525 ± 5 and 520 ± 14 Ma corresponding to the time of the Pan-African orogeny. These results are evidence of a Pan-African suture zone within the northern Shackleton Range. This suture marks the site of a palaeo-subduction zone that likely continues to the Herbert Mountains, where ophiolitic rocks of Neoproterozoic age testify to an ocean basin that was closed during Pan-African collision. The garnet-bearing ultramafic rocks in the Shackleton Range are the first known example of eclogite facies metamorphism in Antarctica that is related to the collision of East and West Gondwana and the first example of Pan-African eclogite facies ultramafic rocks worldwide. Eclogites in the Lanterman Range of the Transantarctic Mountains formed during subduction of the palaeo-Pacific beneath the East Antarctic craton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-pressure/low-temperature metabasites occupy a definite geological position within the structure of the Polar Urals and have a very important bearing on the understanding of the early history of the Ural Mountains. Recently obtained geological, petrographic, geochemical and isotope data allow some conclusions on this history. The metabasites of the Khord"yus and Dzela complexes contain relics of a Neoproterozoic (578 ±8 Ma) oceanic crust. This crust formed part of the base of the early Paleozoic (500 Ma) ensimatic island arc and experienced Ca-Al-Si±Na metasomatism and, probably, partial melting with the formation of boninite melts. However, so far no boninite volcanics have been found. The metabasites at the base of the island arc took part in the collision and as a consequence experienced glaucophane schist and greenschist facies metamorphism during the collision and obduction over the passive Baltic margin 350 ±11 Ma ago.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compressional wave velocities measured in gabbroic rocks and metabasites recovered from Site 293 of Leg 31 in the Philippine Sea (on the Central Basin Fault) are correlative with seismic velocities determined for Layer 3. The lower crustal origin for these rocks suggested by this data is further supported by the similarity between these samples, dredge haul samples from fracture zones in the main ocean basins and rocks found in ophiolite complexes. These plutonic rocks were possibly introduced to the sea floor by movements along the Central Basin Fault, a major tectonic feature in the Philippine Sea, or formed as part of new ocean crust within a leaky transform fault.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dismembered ophiolitic rocks including abundant sheared, serpentinized peridotite (mostly harzburgite) and minor basalts, dolerites, gabbros, and altered metabasites (mainly altered amphibolite) were drilled at most of the sites on the upper to lower Middle America Trench landward slope off Guatemala during Leg 84 of the Deep Sea Drilling Project. These rocks show characteristic Cataclastic deformation with zeolite facies metamorphism and alteration after amphibolite and greenschist facies metamorphism. These features indicate that the rocks originated in mid-oceanic ridge, offridge, and possibly other areas including island arc areas and were metamorphosed under a high geothermal gradient at low pressure. They were then structurally deformed and mixed within a serpentinite melange. Such ophiolite melanges may have been emplaced onto the Trench landward slope area during the initiation of subduction of the Cocos Plate. The emplacement seems to be connected to that of the Nicoya Complex in Costa Rica. The slope cover from early Eocene to Recent shows no history of these metamorphic and deformational events, therefore the emplacement of the dismembered ophiolitic rocks occurred at least before the early Eocene. The dismembered ophiolite-based Trench landward slope off Guatemala is a newly documented style of subduction, which has also recently been found at the easternmost edge of the Philippine Sea Plate along the Izu-Mariana-Yap Trench landward slope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mineralogical (microprobe) and geochemical (X-ray fluorescence, neutron activation analyses) data are given for 18 samples of volcanic rocks from the Guatemala Trench area (Deep Sea Drilling Project Leg 67). Typical fresh oceanic tholeiites occur in the trench itself (Hole 500) and in its immediate vicinity on the Cocos Plate (Site 495). Several samples (often reworked) of "spilitic" oceanic tholeiites are also described from the Trench: their mineralogy (greenschist facies association - actinolite + plagioclase + chlorite) and geochemistry (alteration, sometimes linked to manganese and zinc mineralization) are shown to result from high-temperature (300°-475°C) hydrothermal sea water-basalt interactions. The samples studied are depleted in light rare-earth elements (LREE), with the exception of the slightly LREE-enriched basalts from Hole 500. The occurrence of such different oceanic tholeiites in the same area is problematic. Volcanic rocks from the Guatemala continental slope (Hole 494A) are described as greenschist facies metabasites (actinolite + epidote + chlorite + plagioclase + calcite + quartz), mineralogically different from the spilites exposed on the Costa Rica coastal range (Nicoya Peninsula). Their primary magmatic affinity is uncertain: clinopyroxene and plagioclase compositions, together with titanium and other hygromagmaphile element contents, support an "active margin" affinity. The LREE-depleted patterns encountered in the present case, however, are not frequently found in orogenic samples but are typical of many oceanic tholeiites.