614 resultados para MC-ICP-MS

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The NWW-striking Qinling Orogen formed in the Triassic by collision between the North China and Yangtze Cratons. Triassic granitoid intrusions, mostly middle- to high-K, calc-alkaline in composition, are widespread in this orogen, but contemporaneous intrusions are rare in the southern margin of the North China Craton, an area commonly considered as the hinterland belt of the orogen. In this paper, we report zircon U-Pb ages, elemental geochemistry, and Sr-Nd-Hf isotope data for the Laoniushan granitoid complex that was emplaced in the southern margin of the North China Craton. Zircon U-Pb dating shows that the complex was emplaced in the late Triassic (228±1 to 215±4 Ma), indicating that it is part of the post-collisional magmatism in the Qinling Orogen. The complex consists of, from early to late, biotite monzogranite, quartz diorite, quartz monzonite, and hornblende monzonite, which have a wide compositional range, e.g., SiO2=55.9-70.6 wt%, K2O+Na2O=6.6-10.2 wt%, and Mg# of 24 to 54. Rocks of the biotite monzogranite have high Al2O3(15.5-17.4 wt%), Sr(396-1398 ppm) and Ba(1284-3993 ppm) contents and La/Yb(mostly 14-30) and Sr/Y(mostly 40-97) ratios, but low Yb(mostly 1.3-1.6 ppm) and Y(mostly14-19 ppm) contents, features typical of adakite. The quartz monzonite, hornblende monzonite and quartz diorite have a shoshonitic affinity, with K2O up to 5.58 wt% and K2O/Na2O ratios averaging 1.4. The rocks are characterized by strong LREE/HREE fractionation in chondrite-normalized REE pattern, without obvious Eu anomalies, and show enrichment in large ion lithophile elements but depletion in high field strength elements (Nb, Ta, Ti). The biotite monzogranite (228 Ma) has initial 87Sr/86Sr ratios of 0.7061 to 0.7067, eNd(t) values of -9.2 to -12.6, and ?Hf(t) values of -9.0 to -15.1; whereas the shoshonitic granitoids (mainly 217-215 Ma) have similar initial 87Sr/86Sr ratios (0.7065 to 0.7075) but more radiogenic eNd(t) (-12.4 to -17.0) and eHf(t) (-14.1 to -17.0). The Sr-Nd-Hf isotope data indicate that the rocks were likely generated by partial melting of an ancient lower continental crust with heterogeneous compositions, as partly confirmed by the widespread presence of the early Paleoproterozoic inherited zircons. Mafic microgranular enclaves (MMEs), characterized by fine-grained igneous textures and an abundance of acicular apatites, are common in the Laoniushan complex. Compared with the host rocks, they have lower SiO2 (48.6-53.7 wt.%) and higher Mg# (51-56), Cr (122-393 ppm), and Ni (24-79 ppm), but equivalent Sr-Nd isotope compositions, indicating that the MMEs likely originated from an ancient enriched lithospheric mantle. The abundance of MMEs in the granitoid intrusions suggests that magma mixing plays an important role in the generation of the Laoniushan complex. Collectively, it is suggested that the Laoniushan complex was a product of post-collisional magmatism related to lithospheric extension following slab break-off. Formation of the adakitic and shoshonitic intrusions in the Laoniushan complex indicates that the Qinling Orogen had evolved into a post-collisional setting by about 230-210 Ma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We constructed a high-resolution Mg/Ca record on the planktonic foraminifer Globigerinoides sacculifer in order to explore the change in sea surface temperature (SST) due to the shoaling of the Isthmus of Panama as well as the impact of secondary factors like diagenesis and large salinity fluctuations. The study covers the latest Miocene and the early Pliocene (5.6-3.9 Ma) and was combined with d18O to isolate changes in sea surface salinity (SSS). Before 4.5 Ma, SSTMg/Ca and SSS show moderate fluctuations, indicating a free exchange of surface ocean water masses between the Pacific and the Atlantic. The increase in d18O after 4.5 Ma represents increasing salinities in the Caribbean due to the progressive closure of the Panamanian Gateway. The increase in Mg/Ca toward values of maximum 7 mmol/mol suggests that secondary influences have played a significant role. Evidence of crystalline overgrowths on the foraminiferal tests in correlation with aragonite, Sr/Ca, and productivity cyclicities indicates a diagenetic overprint on the foraminiferal tests. Laser ablation inductively coupled plasma-mass spectrometry analyses, however, do not show significantly increased Mg/Ca ratios in the crystalline overgrowths, and neither do calculations based on pore water data conclusively result in significantly elevated Mg/Ca ratios in the crystalline overgrowths. Alternatively, the elevated Mg/Ca ratios might have been caused by salinity as the d18O record of Site 1000 has been interpreted to represent large fluctuations in SSS, and cultivating experiments have shown an increase in Mg/Ca with increasing salinity. We conclude that the Mg/Ca record <4.5 Ma can only reliably be considered for paleoceanographical purposes when the minimum values, not showing any evidence of secondary influences, are used, resulting in a warming of central Caribbean surface water masses after 4.5 Ma of ~2°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural radionuclides and man-made 137Cs were analyzed in five short sediment cores taken in northern part of the Gulf of Eilat (Gulf of Aqaba) in order to provide information on sedimentation and mixing rates and sediment sources. The maximum estimates of sedimentation rates based on excess 210Pb were found to vary between 0.105 ± 0.020 and 0.35 ± 0.23 cm · year**-1. Even the lowest estimates are significantly higher than those expected from dust deposition, suggesting other sources and processes being responsible for most of the allochthonous material accumulation, including periodical floods following heavy rain events, internal erosion or triggers, like earthquakes. In 137Cs depth profiles no 1963 related nuclear weapon test maxima were found; instead, the activities decrease monotonically, suggesting that a major process leading to radionuclides' depth distribution might be mixing. The mixing rates calculated from 137Cs, excess 210Pb and excess 228Th reach values up to 2.18 ± 0.69 cm**2 · year**-1.