71 resultados para MAXIMUM ENTROPY METHOD (MAXENT)

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fragilariopsis kerguelensis, a dominant diatom species throughout the Antarctic Circumpolar Current, is coined to be one of the main drivers of the biological silicate pump. Here, we study the distribution of this important species and expected consequences of climate change upon it, using correlative species distribution modeling and publicly available presence-only data. As experience with SDM is scarce for marine phytoplankton, this also serves as a pilot study for this organism group. We used the maximum entropy method to calculate distribution models for the diatom F. kerguelensis based on yearly and monthly environmental data (sea surface temperature, salinity, nitrate and silicate concentrations). Observation data were harvested from GBIF and the Global Diatom Database, and for further analyses also from the Hustedt Diatom Collection (BRM). The models were projected on current yearly and seasonal environmental data to study current distribution and its seasonality. Furthermore, we projected the seasonal model on future environmental data obtained from climate models for the year 2100. Projected on current yearly averaged environmental data, all models showed similar distribution patterns for F. kerguelensis. The monthly model showed seasonality, for example, a shift of the southern distribution boundary toward the north in the winter. Projections on future scenarios resulted in a moderately to negligibly shrinking distribution area and a change in seasonality. We found a substantial bias in the publicly available observation datasets, which could be reduced by additional observation records we obtained from the Hustedt Diatom Collection. Present-day distribution patterns inferred from the models coincided well with background knowledge and previous reports about F. kerguelensis distribution, showing that maximum entropy-based distribution models are suitable to map distribution patterns for oceanic planktonic organisms. Our scenario projections indicate moderate effects of climate change upon the biogeography of F. kerguelensis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Species distribution models (SDM) predict species occurrence based on statistical relationships with environmental conditions. The R-package biomod2 which includes 10 different SDM techniques and 10 different evaluation methods was used in this study. Macroalgae are the main biomass producers in Potter Cove, King George Island (Isla 25 de Mayo), Antarctica, and they are sensitive to climate change factors such as suspended particulate matter (SPM). Macroalgae presence and absence data were used to test SDMs suitability and, simultaneously, to assess the environmental response of macroalgae as well as to model four scenarios of distribution shifts by varying SPM conditions due to climate change. According to the averaged evaluation scores of Relative Operating Characteristics (ROC) and True scale statistics (TSS) by models, those methods based on a multitude of decision trees such as Random Forest and Classification Tree Analysis, reached the highest predictive power followed by generalized boosted models (GBM) and maximum-entropy approaches (Maxent). The final ensemble model used 135 of 200 calculated models (TSS > 0.7) and identified hard substrate and SPM as the most influencing parameters followed by distance to glacier, total organic carbon (TOC), bathymetry and slope. The climate change scenarios show an invasive reaction of the macroalgae in case of less SPM and a retreat of the macroalgae in case of higher assumed SPM values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crabeater seal (Lobodon carcinophaga) is the most abundant Antarctic seal and inhabits the circumpolar pack ice zone of the Southern Ocean. Until now, information on important environmental factors affecting its distribution as well as on foraging behaviour is limited. In austral summer 1998, 12 crabeater seals of both sexes and different age classes were equipped with satellitelinked dive recorders at Drescher Inlet (72.85°S, 19.26°E), eastern Weddell Sea. To identify suitable habitat conditions within the Weddell Sea, a maximum entropy (Maxent) modelling approach was implemented. The model revealed that the eastern and southern Weddell Sea is especially suitable for crabeater seals. Distance to the continental shelf break and sea ice concentration were the two most important parameters in modelling species distribution throughout the study period. Model predictions demonstrated that crabeater seals showed a dynamic response to their seasonally changing environment emphasized by the favoured sea ice conditions. Crabeater seals utilized ice-free waters substantially, which is potentially explained by the comparatively low sea ice cover of the Weddell Sea during summer 1998. Diving behaviour was characterized by short (>90 % = 0-4 min) and shallow (>90 % = 0-51 m) dives. This pattern reflects the typical summer and autumn foraging behaviour of crabeater seals. Both the distribution and foraging behaviour corresponded well with the life history of the Antarctic krill (Euphausia superba), the preferred prey of crabeater seals. In general, predicted suitable habitat conditions were congruent with probable habitats of krill, which emphasizes the strong dependence on their primary prey.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maximum entropy spectral analyses and a fitting test to find the best suitable curve for the modified time series based on the non-linear least squares method for Td (diatom temperature) values were performed for the Quaternary portion of the DSDP Sites 579 and 580 in the western North Pacific. The sampling interval averages 13.7 kyr in the Brunhes Chron (0-780 ka) and 16.5 kyr in the later portion of the Matuyama Chron (780-1800 ka) at Site 580, but increases to 17.3 kyr and 23.2 kyr, respectively, at Site 579. Among dominant cycles during the Brunhes Chron, there are 411.5 kyr and 126.0 kyr at Site 579, and 467.0 kyr and 136.7 kyr at Site 580 correspond to 413 kyr and 95 to 124 kyr of the orbital eccentricity. Minor cycles of 41.2 kyr at Site 579 and 41.7 kyr at Site 580 are near to 41 kyr of the obliquity (tilt). During the Matuyama Chron at Site 580, cycles of 49.7 kyr and 43.6 kyr are dominant. The surface-water temperature estimated from diatoms at the western North Pacific DSDP Sites 579 and 580 shows correlation with the fundamental Earth's orbital parameters during Quaternary time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine spatial planning and ecological research call for high-resolution species distribution data. However, those data are still not available for most marine large vertebrates. The dynamic nature of oceanographic processes and the wide-ranging behavior of many marine vertebrates create further difficulties, as distribution data must incorporate both the spatial and temporal dimensions. Cetaceans play an essential role in structuring and maintaining marine ecosystems and face increasing threats from human activities. The Azores holds a high diversity of cetaceans but the information about spatial and temporal patterns of distribution for this marine megafauna group in the region is still very limited. To tackle this issue, we created monthly predictive cetacean distribution maps for spring and summer months, using data collected by the Azores Fisheries Observer Programme between 2004 and 2009. We then combined the individual predictive maps to obtain species richness maps for the same period. Our results reflect a great heterogeneity in distribution among species and within species among different months. This heterogeneity reflects a contrasting influence of oceanographic processes on the distribution of cetacean species. However, some persistent areas of increased species richness could also be identified from our results. We argue that policies aimed at effectively protecting cetaceans and their habitats must include the principle of dynamic ocean management coupled with other area-based management such as marine spatial planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Petrographical and geochemical studies of Neogene marine sediments from the Oman Sea (Leg 117, Sites 720, 724, 726 and 730), show a close relationship between the nature and amount of the organic matter, and the degree of degradation of organic matter by sulfate reduction, i.e. pyritization. Petrographically, three major pyritization types were observed: (1) Finely dispersed pyrite framboids in sediments from Oman Margin and Indus Fan, enriched in autochthonous marine organic matter. (2) Infilling of pores by massive pyrite crystals in Oman Margin sediments with a low TOC and a high microfossil content. (3) Pyrite mineralization of lignaceous fragments in organic-depleted sediments from the Indus Fan leading to more massive pyrite. Geochemically, we can define a sulfate reduction index (SRI) as the percentage of initial organic carbon versus that of residual organic carbon. Finely laminated Pliocene-Pleistocene sediments from the Oman Margin exclusively contain organic matter deriving from organic phytoplankton, for which the quantity (TOC) positively correlates with the geochemical quality (Hydrogen Index). We think that the occurrence of this residual organic matter is linked mainly to a high primary paleo-productivity. The intensity of sulfate reduction is constant for sediments with TOC up to 2% and becomes more important when organic input decreases. This degradation process can destroy up to 50% of the initial organic matter, but is not sufficient to explain some of the encountered very low TOC values. It can be seen that sharp increases of certain plankton species (with mineral skeletons) are responsible for a pronounced degradation of organic matter, due to increased sulfate reduction. In that case, the organic matter may be strongly degraded (high SRI), although deposited in an oxygen-depleted environment. Conversely, Miocene-Pliocene sediments contain an autochthonous organic matter that is typical of both low productivity and oxic processes; their very low sulfate reduction index indicates that very little metabolizable organic matter was initially present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The early to mid-Holocene thermal optimum is a well-known feature in a wide variety of paleoclimate archives from the Northern Hemisphere. Reconstructed summer temperature anomalies from across northern Europe show a clear maximum around 6000 years before present (6 ka). For the marine realm, Holocene trends in sea-surface temperature reconstructions for the North Atlantic and Norwegian Sea do not exhibit a consistent pattern of early to mid- Holocene warmth. Sea-surface temperature records based on alkenones and diatoms generally show the existence of a warm early to mid-Holocene optimum. In contrast, several foraminifer and radiolarian based temperature records from the North Atlantic and Norwegian Sea show a cool mid- Holocene anomaly and a trend towards warmer temperatures in the late Holocene. In this paper, we revisit the foraminifer record from the Vøring Plateau in the Norwegian Sea. We also compare this record with published foraminifer based temperature reconstructions from the North Atlantic and with modelled (CCSM3) upper ocean temperatures. Model results indicate that while the seasonal summer warming of the seasurface was stronger during the mid-Holocene, sub-surface depths experienced a cooling. This hydrographic setting can explain the discrepancies between the Holocene trends exhibited by phytoplankton and zooplankton based temperature proxy records.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reconstruction of the stable carbon isotope evolution in atmospheric CO2 (d13Catm ), as archived in Antarctic ice cores, bears the potential to disentangle the contributions of the different carbon cycle fluxes causing past CO2 variations. Here we present a new record of d13Catm before, during and after the Marine Isotope Stage 5.5 (155 000 to 105 000 years BP). The record was derived with a well established sublimation method using ice from the EPICA Dome C (EDC) and the Talos Dome ice cores in East Antarctica. We find a 0.4 permil shift to heavier values between the mean d13Catm level in the Penultimate (~ 140 000 years BP) and Last Glacial Maximum (~ 22 000 years BP), which can be explained by either (i) changes in the isotopic composition or (ii) intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii) by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 years, but with different phasing and magnitudes. Furthermore, a 5000 years lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS 5.5 (120 000 years BP). Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.