17 resultados para MAREMIP

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pteropods are a group of holoplanktonic gastropods for which global biomass distribution patterns remain poorly resolved. The aim of this study was to collect and synthesize existing pteropod (Gymnosomata, Thecosomata and Pseudothecosomata) abundance and biomass data, in order to evaluate the global distribution of pteropod carbon biomass, with a particular emphasis on its seasonal, temporal and vertical patterns. We collected 25 902 data points from several online databases and a number of scientific articles. The biomass data has been gridded onto a 360 x 180° grid, with a vertical resolution of 33 WOA depth levels. Data has been converted to NetCDF format. Data were collected between 1951-2010, with sampling depths ranging from 0-1000 m. Pteropod biomass data was either extracted directly or derived through converting abundance to biomass with pteropod specific length to weight conversions. In the Northern Hemisphere (NH) the data were distributed evenly throughout the year, whereas sampling in the Southern Hemisphere was biased towards the austral summer months. 86% of all biomass values were located in the NH, most (42%) within the latitudinal band of 30-50° N. The range of global biomass values spanned over three orders of magnitude, with a mean and median biomass concentration of 8.2 mg C l-1 (SD = 61.4) and 0.25 mg C l-1, respectively for all data points, and with a mean of 9.1 mg C l-1 (SD = 64.8) and a median of 0.25 mg C l-1 for non-zero biomass values. The highest mean and median biomass concentrations were located in the NH between 40-50° S (mean biomass: 68.8 mg C l-1 (SD = 213.4) median biomass: 2.5 mg C l-1) while, in the SH, they were within the 70-80° S latitudinal band (mean: 10.5 mg C l-1 (SD = 38.8) and median: 0.2 mg C l-1). Biomass values were lowest in the equatorial regions. A broad range of biomass concentrations was observed at all depths, with the biomass peak located in the surface layer (0-25 m) and values generally decreasing with depth. However, biomass peaks were located at different depths in different ocean basins: 0-25 m depth in the N Atlantic, 50-100 m in the Pacific, 100-200 m in the Arctic, 200-500 m in the Brazilian region and >500 m in the Indo-Pacific region. Biomass in the NH was relatively invariant over the seasonal cycle, but more seasonally variable in the SH. The collected database provides a valuable tool for modellers for the study of ecosystem processes and global biogeochemical cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The smallest marine phytoplankton, collectively termed picophytoplankton, have been routinely enumerated by flow cytometry since the late 1980s, during cruises throughout most of the world ocean. We compiled a database of 40,946 data points, with separate abundance entries for Prochlorococcus, Synechococcus and picoeukaryotes. We use average conversion factors for each of the three groups to convert the abundance data to carbon biomass. After gridding with 1° spacing, the database covers 2.4% of the ocean surface area, with the best data coverage in the North Atlantic, the South Pacific and North Indian basins. The average picophytoplankton biomass is 12 ± 22 µg C L-1 or 1.9 g C m-2. We estimate a total global picophytoplankton biomass, excluding N2-fixers, of 0.53 - 0.74 Pg C (17 - 39 % Prochlorococcus, 12 - 15 % Synechococcus and 49 - 69 % picoeukaryotes). Future efforts in this area of research should focus on reporting calibrated cell size, and collecting data in undersampled regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is a first effort to compile the largest possible body of data available from different plankton databases as well as from individual published or unpublished datasets regarding diatom distribution in the world ocean. The data obtained originate from time series studies as well as spatial studies. This effort is supported by the Marine Ecosystem Data (MAREDAT) project, which aims at building consistent data sets for the main PFTs (Plankton Functional Types) in order to help validate biogeochemical ocean models by using converted C biomass from abundance data. Diatom abundance data were obtained from various research programs with the associated geolocation and date of collection, as well as with a taxonomic information ranging from group down to species. Minimum, maximum and average cell size information were mined from the literature for each taxonomic entry, and all abundance data were subsequently converted to biovolume and C biomass using the same methodology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microzooplankton database. Originally published in: Buitenhuis, Erik, Richard Rivkin, Sévrine Sailley, Corinne Le Quéré (2010) Biogeochemical fluxes through microzooplankton. Global Biogeochemical Cycles Vol. 24, GB4015, doi:10.1029/2009GB003601 This new version has had some mistakes corrected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compiled a database of bacterial abundance of 39 766 data points. After gridding with 1° spacing, the database covers 1.3% of the ocean surface. There is data covering all ocean basins and depth except the Southern Hemisphere below 350 m or from April until June. The average bacterial biomass is 3.9 ± 3.6 µg l-1 with a 20-fold decrease between the surface and the deep sea. We estimate a total ocean inventory of about 1.3 - 1029 bacteria. Using an average of published open ocean measurements for the conversion from abundance to carbon biomass of 9.1 fg cell-1, we calculate a bacterial carbon inventory of about 1.2 Pg C. The main source of uncertainty in this inventory is the conversion factor from abundance to biomass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrozooplankton are an important link between higher and lower trophic levels in the oceans. They serve as the primary food for fish, reptiles, birds and mammals in some regions, and play a role in the export of carbon from the surface to the intermediate and deep ocean. Little, however, is known of their global distribution and biomass. Here we compiled a dataset of macrozooplankton abundance and biomass observations for the global ocean from a collection of four datasets. We harmonise the data to common units, calculate additional carbon biomass where possible, and bin the dataset in a global 1 x 1 degree grid. This dataset is part of a wider effort to provide a global picture of carbon biomass data for key plankton functional types, in particular to support the development of marine ecosystem models. Over 387 700 abundance data and 1330 carbon biomass data have been collected from pre-existing datasets. A further 34 938 abundance data were converted to carbon biomass data using species-specific length frequencies or using species-specific abundance to carbon biomass data. Depth-integrated values are used to calculate known epipelagic macrozooplankton biomass concentrations and global biomass. Global macrozooplankton biomass has a mean of 8.4 µg C l-1, median of 0.15 µg C l-1 and a standard deviation of 63.46 µg C l-1. The global annual average estimate of epipelagic macrozooplankton, based on the median value, is 0.02 Pg C. Biomass is highest in the tropics, decreasing in the sub-tropics and increasing slightly towards the poles. There are, however, limitations on the dataset; abundance observations have good coverage except in the South Pacific mid latitudes, but biomass observation coverage is only good at high latitudes. Biomass is restricted to data that is originally given in carbon or to data that can be converted from abundance to carbon. Carbon conversions from abundance are restricted in the most part by the lack of information on the size of the organism and/or the absence of taxonomic information. Distribution patterns of global macrozooplankton biomass and statistical information about biomass concentrations may be used to validate biogeochemical models and Plankton Functional Type models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coccolithophores are calcifying marine phytoplankton of the class Prymnesiophyceae. They are considered to play an import role in the global carbon cycle through the production and export of organic carbon and calcite. We have compiled observations of global coccolithophore abundance from several existing databases as well as individual contributions of published and unpublished datasets. We estimate carbon biomass using standardised conversion methods and provide estimates of uncertainty associated with these values. The database contains 58 384 individual observations at various taxonomic levels. This corresponds to 12 391 observations of total coccolithophore abundance and biomass. The data span a time period of 1929-2008, with observations from all ocean basins and all seasons, and at depths ranging from the surface to 500 m. Highest biomass values are reported in the North Atlantic, with a maximum of 501.7 ?gCl-1. Lower values are reported for the Pacific (maximum of 79.4 ?gCl-1) and Indian Ocean (up to 178.3 ?gCl-1). Coccolithophores are reported across all latitudes in the Northern Hemisphere, from the Equator to 89degN, although biomass values fall below 3 ?gCl-1 north of 70degN. In the Southern Hemisphere, biomass values fall rapidly south of 50degS, with only a single non-zero observation south of 60degS. Biomass values show a clear seasonal cycle in the Northern Hemisphere, reaching a maximum in the summer months (June-July). In the Southern Hemisphere the seasonal cycle is less evident, possibly due to a greater proportion of low-latitude data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The planktonic haptophyte Phaeocystis has been suggested to play a fundamental role in the global biogeochemical cycling of carbon and sulphur, but little is known about its global biomass distribution. We have collected global microscopy data of the genus Phaeocystis and converted abundance data to carbon biomass using species-specific carbon conversion factors. Microscopic counts of single-celled and colonial Phaeocystis were obtained both through the mining of online databases and by accepting direct submissions (both published and unpublished) from Phaeocystis specialists. We recorded abundance data from a total of 1595 depth-resolved stations sampled between 1955-2009. The quality-controlled dataset includes 5057 counts of individual Phaeocystis cells resolved to species level and information regarding life-stages from 3526 samples. 83% of stations were located in the Northern Hemisphere while 17% were located in the Southern Hemisphere. Most data were located in the latitude range of 50-70° N. While the seasonal distribution of Northern Hemisphere data was well-balanced, Southern Hemisphere data was biased towards summer months. Mean species- and form-specific cell diameters were determined from previously published studies. Cell diameters were used to calculate the cellular biovolume of Phaeocystis cells, assuming spherical geometry. Cell biomass was calculated using a carbon conversion factor for Prymnesiophytes (Menden-Deuer and Lessard, 2000). For colonies, the number of cells per colony was derived from the colony volume. Cell numbers were then converted to carbon concentrations. An estimation of colonial mucus carbon was included a posteriori, assuming a mean colony size for each species. Carbon content per cell ranged from 9 pg (single-celled Phaeocystis antarctica) to 29 pg (colonial Phaeocystis globosa). Non-zero Phaeocystis cell biomasses (without mucus carbon) range from 2.9 - 10?5 µg l-1 to 5.4 - 103 µg l-1, with a mean of 45.7 µg l-1 and a median of 3.0 µg l-1. Highest biomasses occur in the Southern Ocean below 70° S (up to 783.9 µg l-1), and in the North Atlantic around 50° N (up to 5.4 - 103 µg l-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planktic foraminifera are heterotrophic mesozooplankton of global marine abundance. The position of planktic foraminifers in the marine food web is different compared to other protozoans and ranges above the base of heterotrophic consumers. Being secondary producers with an omnivorous diet, which ranges from algae to small metazoans, planktic foraminifers are not limited to a single food source, and are assumed to occur at a balanced abundance displaying the overall marine biological productivity at a regional scale. We have calculated the assemblage carbon biomass from data on standing stocks between the sea surface and 2500 m water depth, based on 754 protein-biomass data of 21 planktic foraminifer species and morphotypes, produced with a newly developed method to analyze the protein biomass of single planktic foraminifer specimens. Samples include symbiont bearing and symbiont barren species, characteristic of surface and deep-water habitats. Conversion factors between individual protein-biomass and assemblage-biomass are calculated for test sizes between 72 and 845 µm (minimum diameter). The calculated assemblage biomass data presented here include 1057 sites and water depth intervals. Although the regional coverage of database is limited to the North Atlantic, Arabian Sea, Red Sea, and Caribbean, our data include a wide range of oligotrophic to eutrophic waters covering six orders of magnitude of assemblage biomass. A first order estimate of the global planktic foraminifer biomass from average standing stocks (>125 µm) ranges at 8.5-32.7 Tg C yr-1 (i.e. 0.008-0.033 Gt C yr-1), and might be more than three time as high including the entire fauna including neanic and juvenile individuals adding up to 25-100 Tg C yr-1. However, this is a first estimate of regional planktic-foraminifer assemblage-biomass (PFAB) extrapolated to the global scale, and future estimates based on larger data-sets might considerably deviate from the one presented here. This paper is supported by, and a contribution to the Marine Ecosystem Data project (MAREDAT).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use a suite of eight ocean biogeochemical/ecological general circulation models from the MAREMIP and CMIP5 archives to explore the relative roles of changes in winds (positive trend of Southern Annular Mode, SAM) and in warming- and freshening-driven trends of upper ocean stratification in altering export production and CO2 uptake in the Southern Ocean at the end of the 21st century. The investigated models simulate a broad range of responses to climate change, with no agreement ona dominance of either the SAM or the warming signal south of 44° S. In the southernmost zone, i.e., south of 58° S, they concur on an increase of biological export production, while between 44 and 58° S the models lack consensus on the sign of change in export. Yet, in both regions, the models show an enhanced CO2 uptake during spring and summer. This is due to a larger CO 2 (aq) drawdown by the same amount of summer export production at a higher Revelle factor at the end of the 21st century. This strongly increases the importance of the biological carbon pump in the entire Southern Ocean. In the temperate zone, between 30 and 44° S all models show a predominance of the warming signal and a nutrient-driven reduction of export production. As a consequence, the share of the regions south of 44° S to the total uptake of the Southern Ocean south of 30° S is projected to increase at the end of the 21st century from 47 to 66% with a commensurable decrease to the north. Despite this major reorganization of the meridional distribution of the major regions of uptake, the total uptake increases largely in line with the rising atmospheric CO2. Simulations with the MITgcm-REcoM2 model show that this is mostly driven by the strong increase of atmospheric CO2, with the climate-driven changes of natural CO2 exchange offsetting that trend only to a limited degree (~10%) and with negligible impact of climate effects on anthropogenic CO2 uptake when integrated over a full annual cycle south of 30° S.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present data set presents depth integrated values of diazotrophs Gamma-A nifH genes abundance, computed from a collection of source data sets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present collection presents the original data sets used to compile Global distributions of diazotrophs abundance, biomass and nitrogen fixation rates

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present data set presents depth integrated values of diazotrophs abundance and biomass, computed from a collection of source data sets.