4 resultados para MAGNETIC-STRUCTURES
em Publishing Network for Geoscientific
Resumo:
Magnetic properties of doleritic and some metamorphic basement rocks underlying Catoche Knoll are studied. Doleritic rocks show a high saturation magnetic moment (2-5 emu/g) compared to metamorphic rocks (0.1-1 emu/g). Magnetic minerals of rocks from this hole show a high stability when heated in vacuo up to 600°C at a fixed rate of heating. Curie temperatures are distributed close to 550°C. These properties differ markedly from those of common submarine basalts observed before. X-ray microprobe analysis techniques were used to determine internal structures of ferromagnetic minerals; in most of ferromagnetic minerals there exist two different types of magnetic phases (i.e., products of high-temperature and low-temperature oxidations). Interpretations on the coexisting, seemingly contradictory, phases can be made based upon present analyses.
Resumo:
This paper describes a 1 : 2 500 000 scale aeromagnetic anomaly map produced by the joint efforts of VNIIOkeangeologia, Polar Marine Geological Research Expedition (PMGRE) and the Alfred Wegener Institute for Polar and Marine Research (AWl) for the Weddell Sea region covering 1 850 000 km' of West Antarctica. Extensive regional magnetic survey flights with line-spacing of about 20 km and 5 km were carried out by the PMGRE between 1977 and 1989. In course of these investigations the PMGRE flew 9 surveys with flight-line spacing of 20 km and 6 surveys with flight-line spacing of 5 km mainly over the mountain areas of southern Palmer Land, western Dronning Maud Land, Coats Land and Pensacola Mountains, over the Ronne lee Shelf and the Filchner Ice Shelf and the central part of the Weddell Sea. More than 215 000 line-kilometers of total field aeromagnetic data have been acquired by using an Ilyushin Il-14 ski-equipped aircraft. Survey operations were centered on the field base stations Druzhnaya-1, -2, and -3, from which the majority of the Weddell Sea region network was completed. The composite map of the Weddell Sea region is prepared in colour, showing magnetic anomaly contours at intervals of 50-100 nT with supplemental contours at an interval of 25 nT in low gradient areas, on a polar stereographic projection. The compiled colour magnetic anomaly map of the Weddell Sea region demonstrates that features of large areal extent, such as geologic provinces, fold-belts, ancient eratonic fragments and other regional structural features can be readily delineated. The map allows a comparison of regional magnetic features with similar-scale geological structures on geological and geophysical maps. It also provides a database for the future production of the ''Digital Magnetic Anomaly Map of Antarctica'' in the framework of the Scientific Committee on Antarctic Research/International Association of Geomagnetism and Aeronomy (SCAR/IAGA) compilation.
Resumo:
The Sør Rondane Mountains (SRM) in eastern Dronning Maud Land (DML) are located in an area, where two apparent Pan-African (650-520 Ma) orogenic mobile belts appear to intersect, the East African-Antarctic Orogen and the Kuunga Orogen. Hence, a better understanding of the tectonic structure of the Sør Rondane region is an important key for unravelling the complex geodynamic evolution of the eastern DML and adjacent regions of East Antarctica during the Late Neoproterozoic/Early Palaeozoic amalgamation of Gondwana. The SRM were recently (2011-2012) aerogeophysically investigated with a 5 km flight line spacing, covering a total area of ~140,000 km². The aeromagnetic data are correlated with ground-based magnetic susceptibility measurements and geological field data and allow to project tectonic terranes and individual structures into ice-covered areas. Magnetic anomalies and basement foliation trends are collinear in areas dominated by simple shear deformation, whereas an area of large-scale refolding correlates with a subdued small-scale broken magnetic anomaly pattern. The latter area can be regarded as a distinct tectonic domain, the central Sør Rondane corridor. It magnetically separates the SRM into an eastern, a central, and a western portion. This subdivision is presumably related to late Pan-African extensional tectonics and suggests that such a tectonic regime may play a larger role than previously assumed. Voluminous late Pan-African granitoids, which are mainly undeformed, correlate with positive magnetic anomalies between +30 and +80 nT, while a strong magnetic high (+680 nT) near the granitic intrusion at Dufekfjellet is caused by a highly magnetised enigmatic body. The recently discovered prominent magnetic anomaly province of southeastern DML continues into the southern part of the Sør Rondane region, where only a few outcrops are exposed. Findings at these westernmost nunataks of the SRM indicate that the subdued magnetic anomaly pattern of this southeastern DML province is most likely caused by the predominance of metasedimentary rocks of yet unknown age.
Resumo:
Surface sediment samples representative for the tropical and subtropical South Atlantic (15°N to 40°S) were investigated by isothermal magnetic methods to delineate magnetic mineral distribution patterns and to identify their predominant Holocene climatic and oceanographic controls. Individual parameters reveal distinct, yet frequently overlapping, regional sedimentation characteristics. A probabilistic ('fuzzy c-means') cluster analysis was applied to five concentration independent magnetic properties assessing magnetite to hematite ratios and diagnostic of bulk and fine-particle magnetite grain size and coercivity spectra. The resultant 10 cluster structures establish an oceanwide magnetic sediment classification scheme tracing the major terrigenous eolian and fluvial fluxes, authigenic biogenic magnetite accumulation in high-productivity areas, transport by ocean current systems, and effects of bottom water velocity on depositional regimes. Distinct dissimilarities in magnetic mineral inventories between the eastern and western basins of the South Atlantic reflect prominent contrasts of both oceanic and continental influences.