58 resultados para M. Noel
em Publishing Network for Geoscientific
Resumo:
Mixed assemblages of Pliocene and Quaternary foraminifera occur within the Quaternary succession of the CRP-1 drillhole. Pliocene foraminifera are not present in the lowermost Unit 4.1. are rare in Unit 3.1 and 2.3, are relatively common in Units 2.2 and 2.1, and are absent in Unit 1.1. Fifteen and twelve species were documented in two of the samples from Units 2.2 and 2.1 respectively. A census count of foraminifera in a sample at 26.89 mbsf (Unit 2.2) indicated that 39% of the tests were from a Pliocene source, with the remaining 61% tests assigned to the in situ Quaternary assemblage. There appears to be a close correlation between the stratigraphic distribution of ice-rafted sediments and the test number and diversity of Pliocene taxa. It is concluded that Pliocene assemblages were not derived from submarine outcrops on Roberts Ridge, but are more likely to have been rafted to the site via major trunk valley drainage systems such as operated within the Mackay and Ferrar glacial valleys. The co-occurrence of marine biota (including foraminifera), fossil wood, pollen, and igneous clasts in the Quaternary succession of CRP-l, points to the marine and terrestrial facies of the Pliocene Sirius Group as a likely source. A major episode of erosion and transport of sediment into the offshore marine basins at about ~1 Ma may have been triggered by dynamism in the ice sheet-glacier system, an episode of regional uplift in the Transantarctic Mountains, sea level oscillations and associated changes in the land-to-sea drainage baselines, or some combination of these factors.
Radiocarbon dating, sedimentation rate, granulometry and organic carbon content of ODP Leg 182 sites
Resumo:
This data report presents sedimentological (grain size) and geochemical (X-ray diffraction, total organic carbon, accelerator mass spectrometry radiocarbon, and percent carbonate) information obtained from the western transect (Sites 1132, 1130, and 1134) and the eastern transect (Sites 1129, 1131, and 1127) in the Great Australian Bight during Leg 182. The purpose is to quantify changing rates of sediment accumulation and changes in sediment type from the late Pleistocene and Holocene, in order to relate these changes to the well-known sea level curve that exists for this time frame. Ultimately, these data can be used to more effectively interpret lithologic variations deeper in the Pleistocene succession, which most likely represent orbitally forced sea level events.
Resumo:
Foraminifera are examined in twenty-six samples from a 44 metre succession of Quaternary glacial sediments recovered from the CRP-1 drillhole on Roberts Ridge, southwestern Ross Sea, Antarctica. In situ marine assemblages were documented in at least three of the six lithostratigraphic units, and it is likely that the remaining three interbedded diamicton units are also marine in origin. Peak foraminiferal diversities are documented in Unit 3.1 (73 species) and Unit 2.2 (32 species). Calcareous benthics dominate the assemblages, but may be accompanied by abundant occurrences of the planktonic Neogloboquadrina pachyderma. Low diversity agglutinated faunas appear in the uppermost strata of Units 4.1 and 2.2. A close relationship between lithofacics and foraminiferal biofacies points to marine environments that alternated between proximity to and distance from active glaciers and iceshelf fronts, with associated variations in salinity, sea-surface ice cover and the levels of rainout from debris-laden ice.
Resumo:
Sparse to moderately abundant foraminiferal assemblages from Oligocene and Lower Miocene sediments in the CRP-2/2A drillhole contain C.27 genera and 42 species of calcareous benthic foraminifera. No planktic or agglutinated taxa were observed. On the basis of their faunal characteristics, four Foraminiferal Units are defined in drillhole succession: Foraminiferal Unit I (26.91-193.95 mbsf), mostly sparse assemblages with Elphidium magellanicum and Cribroelphidium sp.; Foraminiferal Unit II (193.95-342.42 mbsf), mostly moderately abundant assemblages with Cassidulinoides aequilatera and Eponides bradyi; Foraminiferal Unit III (342.42-486.19 mbsf), moderately abundant to sparse assemblages characterised by Cassidulinoides chapmani and Stainforthia sp.; and Foraminiferal Unit IV, Improverished (486.19-624.15, total depth, mbsf), with mostly barren residues, but with large Milioliidae recorded in situ at various horizons in the drill core. Foraminiferal Units I-IV lack taxa allowing correlation to standard zonal schemes. Inspection of faunal records from CIROS-1 and DSDP 270 indicates that, although the faunas show an overall similarity, CRP-2/2A Foraminiferal Units I-IV are not identifiable at these sites. The units are therefore most likely to reflect local environmental changes, and probably will prove useful for local correlation, but their lateral extent is undetermined. All four assemblages apparently represent various glacially-influenced shelf environments, and appear to reflect a long term deepening trend from Units IV to II, from perhaps inner to mid or outer-shelf depths, followed by a return to shallower, inner shelf, conditios for Unit I.
Resumo:
The carbon and oxygen isotopic compositions of selected bryozoan skeletons from upper Pleistocene bryozoan mounds in the Great Australian Bight (Ocean Drilling Program Leg 182; Holes 1129C, 1131A, and 1132B) were determined. Cyclostome bryozoans, Idmidronea spp. and Nevianipora sp., have low to intermediate magnesian calcite skeletons (1.5-10.0 and 0.9-6.4 molar percentage [mol%] MgCO3, respectively), but a considerable number include marine cements. The cheilostome Adeonellopsis spp. are biminerallic, principally aragonite, with some high magnesian calcite (HMC) (6.6-12.1 mol% MgCO3). The HMC fraction of Adeonellopsis has lower d13C and similar d18O values compared with the aragonite fraction. Reexamination of modern bryozoan isotopic composition shows that skeletons of Adeonellopsis spp. and Nevianipora sp. form close to oxygen isotopic equilibrium with their ambient water. Therefore, changes in glacial-interglacial oceanographic conditions are preserved in the oxygen isotopic profiles. The bryozoan oxygen isotopic profiles are correlated well with marine isotope Stages 1-8 in Holes 1129C and 1132B and to Stages 1-4(?) in Hole 1131A. The horizons of the bryozoan mounds that yield skeletons with heavier oxygen isotopic values can be correlated with isotope Stages 2, 4(?), 6, and 8 in Hole 1129C; Stages 2 and 4(?) in Hole 1131A; and Stages 2, 4, 6, and 8 in Hole 1132B. These results provide supporting evidence for a model for bryozoan mound formation, in which the mounds were formed during intensified upwelling and increased trophic resources during glacial periods.
Resumo:
Cores from Sites 1129, 1131, and 1132 (Ocean Drilling Program (ODP) Leg 182) on the uppermost slope at the edge of the continental shelf in the Great Australian Bight reveal the existence of upper Pleistocene bryozoan reef mounds, previously only detected on seismic lines. Benthic foraminiferal oxygen isotope data for the last 450,000 years indicate that bryozoan reef mounds predominantly accumulated during periods of lower sea level and colder climate since stage 8 at Sites 1129 and 1132 and since stage 4 at the deeper Site 1131. During glacials and interstadials (stages 2-8) the combination of lowered sea level, increased upwelling, and absence of the Leeuwin Current probably led to an enhanced carbon flux at the seafloor that favored prolific bryozoan growth and mound formation at Site 1132. At Site 1129, higher temperatures and downwelling appear to have inhibited the full development of bryozoan mounds during stages 2-4. During that time, favorable hydrographic conditions for the growth of bryozoan mounds shifted downslope from Site 1129 to Site 1131. Superimposed on these glacial-interglacial fluctuations is a distinct long-term paleoceanographic change. Prior to stage 8, benthic foraminiferal assemblages indicate low carbon flux to the seafloor, and bryozoan mounds, although present closer inshore, did not accumulate significantly at Sites 1129 and 1132, even during glacials. Our results show that the interplay of sea level change (eustatic and local, linked to platform progradation), glacial-interglacial carbon flux fluctuations (linked to local hydrographic variations), and possibly long-term climatic change strongly influenced the evolution of the Great Australian Bight carbonate margin during the late Pleistocene.