7 resultados para Mésencéphale ventral
em Publishing Network for Geoscientific
Resumo:
Live-imaging techniques (LIT) utilize target-specific fluorescent dyes to visualize biochemical processes using confocal and multiphoton scanning microscopy, which are increasingly employed as non-invasive approach to physiological in-vivo and ex-vivo studies. Here we report application of LIT to bivalve gills for ex-vivo analysis of gill physiology and mapping of reactive oxygen (ROS) and nitrogen (RNS) species formation in the living tissue. Our results indicate that H2O2, HOO. and ONOO- radicals (assessed through C-H2DFFDA staining) are mainly formed within the blood sinus of the filaments and are likely to be produced by hemocytes as defense against invading pathogens. The oxidative damage in these areas is controlled by enhanced CAT (catalase) activities recorded within the filaments. The outermost areas of the ciliated epithelial cells composing the filaments, concentrated the highest mitochondrial densities (MTK Deep Red 633 staining) and the most acidic pH values (as observed with ageladine-a). These mitochondria have low (depolarized) membrane potentials (D psi m) (JC-1 staining), suggesting that the high amounts of ATP required for ciliary beating may be in part produced by non-mitochondrial mechanisms, such as the enzymatic activity of an ATP-regenerating kinase. Nitric oxide (NO, DAF-2DA staining) produced in the region of the peripheral mitochondria may have an effect on mitochondrial electron transport and possibly cause the low membrane potential. High DAF-2DA staining was moreover observed in the muscle cells composing the wall of the blood vessels where NO may be involved in regulating blood vessel diameter. On the ventral bend of the gills, subepithelial mucus glands (SMG) contain large mucous vacuoles showing higher fluorescence intensities for O2.- (DHE staining) than the rest of the tissue. Given the antimicrobial properties of superoxide, release of O2.- into the mucus may help to avoid the development of microbial biofilms on the gill surface. However, cells of the ventral bends are paying a price for this antimicrobial protection, since they show significantly higher oxidative damage, according to the antioxidant enzyme activities and the carbonyl levels, than the rest of the gill tissue. This study provides the first evidence that one single epithelial cell may contain mitochondria with significantly different membrane potentials. Furthermore, we provide new insight into ROS and RNS formation in ex-vivo gill tissues which opens new perspectives for unraveling the different ecophysiological roles of ROS and RNS in multifunctional organs such as gills.
Resumo:
Coastal zones of the Humboldt Current Upwelling System (HCUS) are composed both of rocky and sandy beaches inhabited by macrozoobenthic communities. These show oscillating changes in the dominance of species; the abundance of the sand crab Emerita analoga is linked to phases of the El Niño Southern Oscillation (ENSO). The biogenic surfaces of these crabs serve as substrate for opportunistic colonizers. This study is the first record of an epibiosis between E. analoga and the rock mussel Semimytilus algosus, detected at a southern Peruvian sandy beach. Mussels fouled a wide size-range of adult E. analoga (7.3%) but they themselves belonged to small-size classes. The largest S. algosus was 17.4 mm in length. Highest permanence of epibionts was found on larger sand crabs (maximum between 24 and 27 mm). Significantly more mussels were found on the ventral surface (39.4%) compared to 10 other surface areas of the sand crab. Possible benefits and disadvantages of the observed epibiosis for both the basibiont and the epibiont are discussed.
Resumo:
The genus Calyptogena (Bivalvia: Vesicomyidae) comprises highly specialized bivalves living in symbiosis with sulphur-oxidizing bacteria in reducing habitats. In this study, the genus is revised using shell and anatomical features. The work is based on type material, as well as on the extensive collection of vesicomyids obtained during twelve expeditions to the Pacific and Indian Oceans. Nine Recent species are ascribed to the genus Calyptogena, four of which are new: C. pacifica Dall, 1891, C. fausta Okutani, Fujikura & Hashimoto, 1993, C. rectimargo Scarlato, 1981, C. valdiviae (Thiele & Jaeckel, 1931), C. gallardoi Sellanes & Krylova, 2005, C. goffrediae n. sp., C. starobogatovi n. sp., C. makranensis n. sp. and C. costaricana n. sp. The characteristic features of Calyptogena are: shell up to 90 mm in length, elongate-elliptical or elongate; presence of escutcheon; presence of broad posterior ramus (3b) of right subumbonal cardinal tooth as well as right posterior nymphal ridge; absence of pallial sinus as a result of attachment of intersiphonal septal retractor immediately adjacent to ventral surface of posterior adductor; absence of processes on inner vulva of inhalant siphon; presence of inner demibranch only, with descending and ascending lamellae with interlamellar septa not divided into separate tubes. The most closely related taxa to Calyptogena are probably the genus Isorropodon Sturany, 1896, and the group of species represented by 'Calyptogena' phaseoliformis Métivier, Okutani & Ohta, 1986. These groups have several characters in common, namely absence of pallial sinus, presence of single inner pair of demibranchs and absence of processes on inner vulva of inhalant siphon. The worldwide distribution of the genus Calyptogena suggests that methane seeps at continental margins are the major dispersal routes and that speciation was promoted by geographical isolation. Recent species diversity and fossil records indicate that the genus originated in the Pacific Ocean. Sufficient data to discuss the distribution at species level exist only for C. pacifica, which has a remarkably narrow bathymetric range. Published studies on the physiology of C. pacifica suggest that adaptation to a specific geochemical environment has led to coexisting vesicomyid genera. The bacteria-containing gill of C. pacifica and other Calyptogena species is one of the most specialized in the family Vesicomyidae and may reflect these ecological adaptations.
Resumo:
Our understanding of the effects of ocean acidification on whole organism function is growing, but most current information is for adult stages of development. Here, we show the effects of reduced pH seawater (pH 7.6) on aspects of the development, physiology and behaviour of encapsulated embryos of the marine intertidal gastropod Littorina obtusata. We found reduced viability and increased development times under reduced pH conditions, and the embryos had significantly altered behaviours and physiologies. In acidified seawater, embryos spent more time stationary, had slower rotation rates, spent less time crawling, but increased their movement periodicity compared with those maintained under control conditions. Larval and adult heart rates were significantly lower in acidified seawater, and hatchling snails had an altered shell morphology (lateral length and spiral shell length) compared to control snails. Our findings show that ocean acidification may have multiple, subtle effects during the early development of marine animals that may have implications for their survival beyond those predicted using later life stages.