10 resultados para Mäkisalo, Jukka: Grammar and experimental evidence in Finnish compounds

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dominant model of atmospheric circulation posits that hot air rises, creating horizontal winds. A second major driver has recently been proposed by Makarieva and Gorshkov in their biotic pump theory (BPT), which suggests that evapotranspiration from natural closed-canopy forests causes intense condensation, and hence winds from ocean to land. Critics of the BPT argue that air movement to fill the partial vacuum caused by condensation is always isotropic, and therefore causes no net air movement (Bunyard, 2015, hdl:11232/397). This paper explores the physics of water condensation under mild atmospheric conditions, within a purpose-designed square-section 4.8 m-tall closed-system structure. Two enclosed vertical columns are connected at top and bottom by two horizontal tunnels, around which 19.5 m**3 of atmospheric air can circulate freely, allowing rotary airflows in either direction. This air can be cooled and/or warmed by refrigeration pipes and a heating mat, and changes in airflow, temperature, humidity and barometric pressure measured in real time. The study investigates whether the "hot-air-rises" or an implosive condensation model can better explain the results of more than 100 experiments. The data show a highly significant correlation (R2 >0.96, p value <0.001) between observed airflows and partial pressure changes from condensation. While the kinetic energy of the refrigerated air falls short of that required in bringing about observed airflows by a factor of at least 30, less than a tenth of the potential kinetic energy from condensation is shown to be sufficient. The assumption that condensation of water vapour is always isotropic is therefore incorrect. Condensation can be anisotropic, and in the laboratory does cause sustained airflow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the role of microzooplankton (sensu latto, grazers <500 µm) in determining the fate of phytoplankton production (PP) along a glacier-to-open sea transect in the Greenland subarctic fjord, Godthabfjord. Based on the distribution of size fractionated chlorophyll a (chl a) concentrations we established 4 zones: (1) Fyllas Bank, characterized by deep chl a maxima (ca. 30 to 40 m) consisting of large cells, (2) the mouth and main branch of the fjord, where phytoplankton was relatively homogeneously distributed in the upper 30 m layer, (3) inner waters influenced by glacial melt water and upwelling, with high chl a concentrations (up to 12 µg/l) in the >10 µm fraction within a narrow (2 m) subsurface layer, and (4) the Kapisigdlit branch of the fjord, ice-free, and characterized with a thick and deep chl a maximum layer. Overall, microzooplankton grazing impact on primary production was variable and seldom significant in the Fyllas Bank and mouth of the fjord, quite intensive (up to >100% potential PP consumed daily) in the middle part of the main and Kapisigdlit branches of the fjord, and rather low and unable to control the fast growing phytoplankton population inhabiting the nutrient rich waters in the upwelling area in the vicinity of the glacier. Most of the grazing impact was on the <10 µm phytoplankton fraction, and the major grazers of the system seem to be >20 µm microzooplankton, as deducted from additional dilution experiments removing this size fraction. Overall, little or no export of phytoplankton out of the fjord to the Fyllas Bank can be determined from our data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Many marine planktonic crustaceans such as copepods have been considered as widespread organisms. However, the growing evidence for cryptic and pseudo-cryptic speciation has emphasized the need of re-evaluating the status of copepod species complexes in molecular and morphological studies to get a clearer picture about pelagic marine species as evolutionary units and their distributions. This study analyses the molecular diversity of the ecologically important Paracalanus parvus species complex. Its seven currently recognized species are abundant and also often dominant in marine coastal regions worldwide from temperate to tropical oceans. Results COI and Cytochrome b sequences of 160 specimens of the Paracalanus parvus complex from all oceans were obtained. Furthermore, 42 COI sequences from GenBank were added for the genetic analyses. Thirteen distinct molecular operational taxonomic units (MOTU) and two single sequences were revealed with cladistic analyses (Maximum Likelihood, Bayesian Inference), of which seven were identical with results from species delimitation methods (barcode gaps, ABDG, GMYC, Rosenberg's P(AB)). In total, 10 to 12 putative species were detected and could be placed in three categories: (1) temperate geographically isolated, (2) warm-temperate to tropical wider spread and (3) circumglobal warm-water species. Conclusions The present study provides evidence of cryptic or pseudocryptic speciation in the Paracalanus parvus complex. One major insight is that the species Paracalanus parvus s.s. is not panmictic, but may be restricted in its distribution to the northeastern Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated above- and belowground ecosystem changes in a 16 year, combined fertilization and warming experiment in a High Arctic tundra deciduous shrub heath (Alexandra Fiord, Ellesmere Island, NU, Canada). Soil emissions of the three key greenhouse gases (GHGs) (carbon dioxide, methane, and nitrous oxide) were measured in mid-July 2009 using soil respiration chambers attached to a FTIR system. Soil chemical and biochemical properties including Q10 values for CO2, CH4, and N2O, Bacteria and Archaea assemblage composition, and the diversity and prevalence of key nitrogen cycling genes including bacterial amoA, crenarchaeal amoA, and nosZ were measured. Warming and fertilization caused strong increases in plant community cover and height but had limited effects on GHG fluxes and no substantial effect on soil chemistry or biochemistry. Similarly, there was a surprising lack of directional shifts in the soil microbial community as a whole or any change at all in microbial functional groups associated with CH4 consumption or N2O cycling in any treatment. Thus, it appears that while warming and increased nutrient availability have strongly affected the plant community over the last 16 years, the belowground ecosystem has not yet responded. This resistance of the soil ecosystem has resulted in limited changes in GHG fluxes in response to the experimental treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Identifying plant communities that are resistant to climate change will be critical for developing accurate, wide-scale vegetation change predictions. Most northern plant communities, especially tundra, have shown strong responses to experimental and observed warming. 2. Experimental warming is a key tool for understanding vegetation responses to climate change. We used open-top chambers to passively warm an evergreen-shrub heath by 1.0-1.3 °C for 15 years at Alexandra Fiord, Nunavut, Canada (79 °N). In 1996, 2000 and 2007, we measured height, plant composition and abundance with a point-intercept method. 3. Experimental warming did not strongly affect vascular plant cover, canopy height or species diversity, but it did increase bryophyte cover by 6.3% and decrease lichen cover by 3.5%. Temporal changes in plant cover were more frequent and of greater magnitude than changes due to experimental warming. 4. Synthesis. This evergreen-shrub heath continues to exhibit community-level resistance to long-term experimental warming, in contrast to most Arctic plant communities. Our findings support the view that only substantial climatic changes will alter unproductive ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Future oceans are predicted to contain less oxygen than at present. This is because oxygen is less soluble in warmer water and predicted stratification will reduce mixing. Hypoxia in marine environments is thus likely to become more widespread in marine environments and understanding species-responses is important to predicting future impacts on biodiversity. This study used a tractable model, the Antarctic clam, Laternula elliptica, which can live for 36 years, and has a well-characterized ecology and physiology to understand responses to hypoxia and how the effect varied with age. Younger animals had a higher condition index, higher adenylate energy charge and transcriptional profiling indicated that they were physically active in their response to hypoxia, whereas older animals were more sedentary, with higher levels of oxidative damage and apoptosis in the gills. These effects could be attributed, in part, to age-related tissue scaling; older animals had proportionally less contractile muscle mass and smaller gills and foot compared with younger animals, with consequential effects on the whole-animal physiological response. The data here emphasize the importance of including age effects, as large mature individuals appear to be less able to resist hypoxic conditions and this is the size range that is the major contributor to future generations. Thus, the increased prevalence of hypoxia in future oceans may have marked effects on benthic organisms' abilities to persist and this is especially so for long-lived species when predicting responses to environmental perturbation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of elevated CO2 and temperature on photosynthesis and calcification of two important calcifying reef algae (Halimeda macroloba and Halimeda cylindracea) were investigated with O2 microsensors and chlorophyll a fluorometry through a combination of two pCO2 (400 and 1,200 µatm) and two temperature treatments (28 and 32 °C) equivalent to the present and predicted conditions during the 2100 austral summer. Combined exposure to pCO2 and elevated temperature impaired calcification and photosynthesis in the two Halimeda species due to changes in the microenvironment around the algal segments and a reduction in physiological performance. There were no significant changes in controls over the 5-week experiment, but there was a 50-70 % decrease in photochemical efficiency (maximum quantum yield), a 70-80 % decrease in O2 production and a threefold reduction in calcification rate in the elevated CO2 and high temperature treatment. Calcification in these species is closely coupled with photosynthesis, such that a decrease in photosynthetic efficiency leads to a decrease in calcification. Although pH seems to be the main factor affecting Halimeda species, heat stress also has an impact on their photosystem II photochemical efficiency. There was a strong combined effect of elevated CO2 and temperature in both species, where exposure to elevated CO2 or temperature alone decreased photosynthesis and calcification, but exposure to both elevated CO2 and temperature caused a greater decline in photosynthesis and calcification than in each stress individually. Our study shows that ocean acidification and ocean warming are drivers of calcification and photosynthesis inhibition in Halimeda. Predicted climate change scenarios for 2100 would therefore severely affect the fitness of Halimeda, which can result in a strongly reduced production of carbonate sediments on coral reefs under such changed climate conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.