37 resultados para Low-Pr-Fluid

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The strontium isotope ratios of authigenic carbonates from Indian Ocean sea-floor basalts have been used to determine the timing of carbonate mineral precipitation and fluid flow. The samples include calcites from 57.2 Ma crust from Ocean Drilling Project (ODP) Site 715, and calcites, aragonites, and siderites from 63.7 Ma crust from ODP Site 707. At Site 715, calcite precipitation may have begun at any time after the basalts cooled, and it continued until approximately 31 Ma, or 26 m.y. after basalt eruption. At Site 707, aragonite and siderite did not begin to precipitate until about 36 Ma, almost 30 m.y. after basalt eruption, and continued to precipitate until at least 30 and 28 Ma, respectively. Calcite precipitation began at approximately 32 Ma and continued until 22 Ma. These ages suggest that vein mineral deposition and low-temperature fluid circulation in the ocean crust may continue for much longer periods of time than previously observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Depending on the temperature and the extent of diagenetic alteration of fluid chemistry, fluid flow at convergent margins may transfer important quantities of heat and mass between the crust and seawater, thereby influencing global mass, isotopic and heat budgets. In the North Aoba Basin, an intra-arc basin located at the New Hebrides Island Arc, alteration of volcanic ash to clay minerals and zeolites forms a CaCl2 brine, perhaps in less than 1 to 3 m.y. The brine results from an exchange of Ca for Na, K, and Mg, and an increase in Cl concentrations to a maximum of 1241 mM. The Cl increase is partly due to the transfer of H2O from the pore fluid into authigenic minerals, but water mass balances, d18O-Cl correlations, and Br/Cl ratios suggest that there is a source of Cl in the sediments. Concentration profiles indicate that Li is transferred from the fluid to solid phase at depths <300 meters below seafloor (mbsf), but at greater depths it is transferred from the solid to fluid phase, at temperatures possibly as low as 25°C. In the accretionary wedge extensive fluid flow appears to be confined to highly faulted regions. Although Cl concentrations less than seawater value are common at convergent margins, the New Hebrides margin contains little low-Cl fluid. Br/Cl ratios suggest the low-Cl fluid is from dilution, and d18O values indicate the water may be derived from mineral dehydration and mixing with meteoric water. The New Hebrides margin exhibits few surface manifestations of venting (e.g., sulfide-oxidizing benthic biological communities, carbonate crusts, mud volcanoes) and thus fluid fluxes may be smaller than at many other margins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pore fluids from two ODP sites at Eastern Mediterranean mud volcanoes have been analyzed for their Cl concentration and their delta18O and deltaD isotopic composition. The Cl data span a wide range of concentrations, from extremely depleted with respect to seawater (as low as 60 mM) at the crest of Milano dome (site 970) to strongly enriched (up to 5.4 M) at Napoli dome (site 971). Chloride enrichment is known to be due to dissolving Messinian evaporites, whereas the source of the low-Cl fluid is deduced from stable isotope data presented here. The isotopic composition of the endmember fluid is found to be +10? for delta18O and -32? for deltaD for low- as well as for high-Cl waters. From this signature it can be concluded that neither gas hydrates nor meteoric water play a significant role in the freshening of the pore water. Several other processes altering the delta18O/deltaD composition of pore waters are discussed and considered to be of only negligible influence. The process characterizing the isotopic composition of the fluid is found to be clay mineral dehydration (mainly smectite-illite transformation), corresponding to a depth range of 3.5-7 km and an elevated temperature of about 120-165°C. A quantitative estimate shows that this reaction is capable of producing the observed extreme Cl depletion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During ODP Leg 168, 10 sites were drilled across the eastern flank of the Juan de Fuca Ridge (JdFR), to examine the conditions of fluid-rock interaction in three distinct hydrothermal regimes (referred to as the Hydrothermal Transition (HT), Buried Basement (BB) and Rough Basement (RB) transects), extending over a ~120 km linear transect perpendicular to the spreading ridge. This was carried out in an attempt to constrain the conditions and processes that control the location, style and magnitude of low temperature (<150°C) fluid-rock interaction within this setting. This paper presents new data on the petrology, mineral chemistry and whole rock strontium and oxygen isotopic compositions of basalts from the eastern flank of the JdFR, in order to investigate the extent, style and sequence of low-temperature hydrothermal alteration and to establish how the hydrothermal regime evolved with time. Throughout the flank, a progressive sequence of low-temperature hydrothermal alteration has been identified, marked by changes in the dominant secondary mineral assemblage, changing from: chlorite+chlorite/smectite; to iron oyxhydroxide+celadonite; to saponite+/-pyrite; culminating at present with Ca- to CaMg(+/-Fe,Mn)-carbonate. The changes in secondary mineralogy have been used to infer a series of systematic shifts in the conditions of alteration that occurred as the basement moved off-axis and was progressively buried by sediment. In general, hydrothermal alteration of the uppermost oceanic crust commenced under open, oxidative conditions, with interaction between unmodified to slightly modified seawater and basaltic crust, to a regime in which circulation of a strongly modified seawater-derived fluid was more restricted, and alteration occurred under non-oxidative conditions. Across the flank, petrological observations and microprobe analyses indicate that the observed ranges in secondary mineral composition are directly related to changes in the geochemical and textural characteristics of the basement, as well as to interaction between fluids and phases from the four stages of alteration. This is suggestive of an increase in fluid-rock increased with time. Whole rock 87Sr/86Sr and d18O analyses of basalts from across the eastern flank of the JdFR reinforce petrological observations, with 87Sr/86Sr and d18O values slightly elevated above accepted pristine MORB values for this region. These results are consistent with an increase in the amount of fluid-rock interaction with time. Across the flank, enrichment in the 87Sr/86Sr and d18O relative to MORB, is influenced by a number of factors, including: local and regional variations in the crustal lithology and structure; the age of the crust; the extent of bulk rock alteration; and theoretically, the relative abundance of different isotopically-enriched secondary mineral phases in the crust.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined small-scale shear zones in drillcore samples of abyssal peridotites from the Mid-Atlantic Ridge. These shear zones are associated with veins consisting of chlorite + actinolite/tremolite assemblages, with accessory phases zircon and apatite, and they are interpreted as altered plagiogranite melt impregnations, which originate from hydrous partial melting of gabbroic intrusion in an oceanic detachment fault. Ti-in-zircon thermometry yields temperatures around 820°C for the crystallization of the evolved melt. Reaction path modeling indicates that the alteration assemblage includes serpentine of the adjacent altered peridotites. Based on the model results, we propose that formation of chlorite occurred at higher temperatures than serpentinization, thus leading to strain localization around former plagiogranites during alteration. The detachment fault represents a major pathway for fluids through the oceanic crust, as evidenced by extremely low d18O of altered plagiogranite veins (+3.0-4.2 per mil) and adjacent serpentinites (+ 2.6-3.7 per mil). The uniform oxygen isotope data indicate that fluid flow in the detachment fault system affected veins and adjacent host serpentinites likewise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Central Hill is in the northern part of the Escanaba Trough, which is a sediment-filled rift of southern Gorda Ridge. Central Hill is oriented north-south and is associated with extensive sulfide deposits. Hydrothermal alteration of sediment from Site 1038 was studied through analyses of mineralogy and the chemistry and oxygen isotopic compositions of one nearly pure clay sample. In addition, Site 1037 was drilled to establish the character of the unaltered sedimentary sequence away from the hydrothermal centers of the Northern Escanaba Trough Study Area (NESCA). Mineralogy of the clay-size fraction of turbiditic and hemipelagic sediments of Hole 1037B are predominantly quartz, feldspar, pyroxene, illite, chlorite, and smectite, representing continental-derived material. Cores from Hole 1038I, located within the area of Central Hill but away from known active vent areas, recovered minor amounts of chlorite/smectite mixed-layer clay in the fine fraction, indicating a low-temperature hydrothermal alteration. The 137.4-m-thick sediment section of Hole 1038G is located in an area of low-temperature venting. The uppermost sample is classified as chlorite/smectite mixed layer, which is underlain by chlorite as the dominant mineral. The lowermost deposits of Hole 1038G are also characterized by chlorite/smectite mixed-layer clay. In comparison to Hole 1038I, the mineralogic sequence of Hole 1038G reflects increased chloritization. Intensely altered sediment is almost completely replaced by hydrothermal chlorite in subsurface sediments of Hole 1038H. Alteration to chlorite is characterized by depletion in Na, K, Ti, Ca, Sr, Cs, and Tl and enrichment in Ba. Further, Eu depletion reflects a high-temperature plagioclase alteration. A chlorite 18O value of 2.6 indicates formation at a temperature of ~190°C. It is concluded that the authigenic chlorite in Hole 1038H formed by an active high-temperature fluid flow in the shallow subsurface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mineralogy and chemistry of altered basalts and the stable isotopic compositions of secondary vein carbonates were studied in cores from Ocean Drilling Program Hole 843B, located in 95-Ma crust of the Hawaiian Arch. Millimeter- to centimeter-sized dark alteration halos around veins are 5%-15% altered to celadonite and Fe-oxyhydroxides, plus minor saponite and calcite. Adjacent gray host rocks are about 15% altered to saponite and calcite. The dark halos are enriched in H2O+, CO2, FeT, K2O, MnO, and Fe3+/FeT and depleted in SiO2, Al2O3, MgO, and TiO2 relative to gray host rocks. Brown alteration halos occur around veins where veins are more abundant, and are similar to dark halos, but contain more Fe-oxyhydroxides and exhibit greater Fe2O3T contents and higher Fe3+/FeT. Stable isotopic compositions of vein carbonates are consistent with their precipitation from seawater at temperatures of 5°-40°C. Crosscutting relationships of veins and zoned vein and vesicle fillings reveal a sequence of secondary mineral formation and alteration conditions. Celadonite and Fe-oxyhydroxides formed and dark alteration halos developed relatively early, under oxidizing conditions at low temperatures (<50°C). Saponite formed later at lower seawater/rock ratios and under more reducing conditions. Calcite and pyrite formed last in veins and vesicles from more evolved, seawaterderived fluids at temperatures of 5°-40°C. A second stage of celadonite, with compositions distinct from the early celadonite, also occurred relatively late (within the "calcite stage"), and may be related to refracturing of the crust and introduction of less-evolved seawater solutions into the rocks. Trends to higher K2O contents are attributed to alteration, but high K/Ti, Ba, and Zr contents indicate the presence of enriched or transitional MORB. CO2 contents of Pacific ODP cores exhibit a general increase with age suggesting progressive fixation of CO2 as calcite in the crust, but this could be complicated by local heterogeneities in fracturing and calcite formation in the crust.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The highly depleted intra-oceanic Tonga-Kermadec island arc forms an endmember of arc systems and a unique location in which to isolate the effects of the slab flux. High precision TIMS uranium, thorium, strontium, neodymium, and lead isotopes, along with complete major and trace element data, have been obtained on an extensive sample set comprising fifty-eight lavas along the arc as well as nineteen samples of the subducting sediments at DSDP site 204 just to the east of the Tonga-Kermadec trench. Ca/Ti and Al/Ti ratios extend from values appropriate to an N-MORB source in the southern Kermadecs to very high ratios in Tonga interpreted to reflect increasing degrees of depletion of the mantle wedge due to backarc basalt extraction. The isotope data emphasize the need for four components in the petrogenesis of the lavas: (1) the mantle wedge; (2) a component with elevated 207Pb/204Pb towards which the Kermadec and southern Tongan lavas extend; (3) a component characterised by high 206Pb/204Pb, Ta/Nd, and low 143Nd/144Nd observed only in the northernmost Tongan islands of Tafahi and Niuatoputapu; (4) a fluid component characterised by strong enrichments of Rb, Ba, U, K, Ph, and Sr, relative to Th, Zr, and the REE and producing large 238U excesses ((230Th/238U) = 0.8-0.5) in the more depleted lavas. The mantle wedge (Component 1) is isotopically similar to the source of the Lau BABB. Component 2 is average pelagic sediment on the downgoing Pacific plate as observed at DSDP sites 595/596 and in the upper sections of the sediment pile at DSDP site 204. Mass balance calculations indicate that less than 0.5% is recycled into the arc lavas; essentially all the subducted sediment is returned to the upper mantle (~0.03 km**3/yr). Exceptionally low concentrations of Ta and Nb relative to Th and the LREE requires that this sediment component is added as a partial melt which was in equilibrium with residual rutile or ilmenite. Component 3 is identified as volcaniclastics from the Louisville Ridge which comprise the lower 44 m of the sediment section intersected at DSDP site 204. These volcaniclastics are spatially restricted to the vicinity of the Louisville Ridge and provide a unique sediment tracer which can be used to show that it takes 4 Myr from the time of subduction to its first appearance in the arc lava signature. Component 4, the fluid contribution to the lava source is inferred to contribute ~1 ppm Rb, 10 ppm Ba, 0.02 ppm U, 600 ppm K, 0.2 ppm Ph, and 30 ppm Sr. It has 87Sr/86Sr = 0.7035 and 206Pb/204Pb = 18.5 and thus it is inferred to have been derived from dehydration of the subducting altered oceanic crust. U-Th isotope disequilibria reflect the time since fluid release from the subducting slab and a reference line through the lowest (230Th/232Th) lavas constrains this to be 30000-50000 yr. The U-Th and Th-Ra isotope systematics are decoupled, and it is suggested that Th-Ra isotope disequilibria record the time since partial melting and thus indicate rapid channelled magma ascent. Olivine gabbro xenoliths from Raoul are interpreted as cumulates to their host lavas with which they form zero age U-Th isochrons indicating that minimal time was spent in magma chambers. The subduction signature is not observed in lavas from the backarc island of Niuafo'ou. These were derived from partial melting of fertile peridotite at 130-160 km depth with melt rates around 0.0002 kg/m**3/yr.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analytical challenges in obtaining high quality measurements of rare earth elements (REEs) from small pore fluid volumes have limited the application of REEs as deep fluid geochemical tracers. Using a recently developed analytical technique, we analyzed REEs from pore fluids collected from Sites U1325 and U1329, drilled on the northern Cascadia margin during the Integrated Ocean Drilling Program (IODP) Expedition 311, to investigate the REE behavior during diagenesis and their utility as tracers of deep fluid migration. These sites were selected because they represent contrasting settings on an accretionary margin: a ponded basin at the toe of the margin, and the landward Tofino Basin near the shelf's edge. REE concentrations of pore fluid in the methanogenic zone at Sites U1325 and U1329 correlate positively with concentrations of dissolved organic carbon (DOC) and alkalinity. Fractionations across the REE series are driven by preferential complexation of the heavy REEs. Simultaneous enrichment of diagenetic indicators (DOC and alkalinity) and of REEs (in particular the heavy elements Ho to Lu), suggests that the heavy REEs are released during particulate organic carbon (POC) degradation and are subsequently chelated by DOC. REE concentrations are greater at Site U1325, a site where shorter residence times of POC in sulfate-bearing redox zones may enhance REE burial efficiency within sulfidic and methanogenic sediment zones where REE release ensues. Cross-plots of La concentrations versus Cl, Li and Sr delineate a distinct field for the deep fluids (z > 75 mbsf) at Site U1329, and indicate the presence of a fluid not observed at the other sites drilled on the Cascadia margin. Changes in REE patterns, the presence of a positive Eu anomaly, and other available geochemical data for this site suggest a complex hydrology and possible interaction with the igneous Crescent Terrane, located east of the drilled transect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New geochemical data on serpentinite muds and metamorphic clasts recovered during Ocean Drilling Program Legs 195 (Holes 1200A-1200E) and 125 (Holes 778A and 779A) provide insights into the proportions of rock types of various sources that compose the serpentinite mudflows and the fluid-rock interactions that predominate in these muds. We interpret the metamorphic rock fragments as derivatives of mostly metamorphosed mafic rocks from the descending Pacific oceanic crust. Based on their mid-ocean-ridge basalt (MORB)-like Al2O3, TiO2, CaO, Si/Mg, and rare earth element (REE) systematics, these metamorphic rocks are classified as metabasalts/metagabbros and, therefore, ~30-km depths represent an active subduction zone setting. The serpentinite muds from Holes 1200A and 1200E have slightly lower REE when compared to Hole 1200D, but overall the REE abundance levels range between 0.1-1 x chondrite (CI) levels. The chondrite-normalized patterns have [La/Sm]N ~ 2.3 and [Sm/Yb]N ~ 2. With the exception of one sample, the analyzed metamorphic clasts show flat to slightly depleted light REE patterns with 1.0-15 x CI levels, resembling MORBs. Visually, ~6 vol% of the serpentinized muds are composed of 'exotic' materials (metamorphic clasts [schists]). Our mixing calculations confirm this result and show that the serpentinite muds are produced by additions of ~5% metamafic materials (with flat and up to 10 x CI REE levels) to serpentinized peridotite clast material (with very low REE abundances and U-shaped chondrite-normalized patterns). The preferential incorporation of B, Cs, Rb, Li, As, Sb, and Ba into the structure of H2O-bearing sheet silicates (different than serpentine) in the Leg 125 and Leg 195 metamorphic clasts (chlorite, amphibole, and micas) have little effect on the overall fluid-mobile element (FME) enrichments in the serpentinite muds (average B = ~13 ppm; average Cs = ~0.05 ppm; average As = ~1.25 ppm). The extent of FME enrichment in the serpentinized muds is similar to that described for the serpentinized peridotites, both recording interaction with fluids very rich in B, Cs, and As originating from the subducting Pacific slab.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Very rare, halogen-rich andesite melt inclusions (HRA) in bytownitic plagioclase phenocrysts (An89-90) from tephra fallout of the Izu arc volcanic front (Izu VF) provide new insights into the processes of fluid release from slab trenchward to the volcanic front in a cool subduction zone. These HRA are markedly enriched in Cl, F and Li - by factors of up to 8 (Cl, F) and 1.5 (Li) - but indistinguishable with respect to the fluid-mobile large-ion lithophile elements (LILE; K, Sr, Rb, Cs, Ba, Pb, U), rare earths (REE) or high field strength elements (HFSE) from the low-K tholeiitic magmas of the Izu VF. We suggest that the chemical signature of the HRA reflects the presence of a fluid in the mantle source that originated from the serpentinized mantle peridotite above the metacrust. This "wedge serpentinite" presumably formed by fluid infiltration beneath the forearc and was subsequently down-dragged with the slab to arc front depths. The combined evidence from the Izu VF (?110 km above slab) and the outer forearc serpentinite seamounts (~25 to 30 km above slab) suggests that the slab flux of B and Cl is highest beneath the forearc, and decreases with increasing slab depths. In contrast, the slab flux of Li is minor beneath the forearc, but increases with depth. Fluorine may behave similarly to Li, whereas the fluid-mobile LILE appear to be largely retained in the slab trenchward from the Izu VF. Consequently, the chemical signatures of both Izu trench sediments and basaltic rocks appear preserved until arc front depths.