39 resultados para Lost Decade
em Publishing Network for Geoscientific
Meteorological observations during DECADE cruise from St. Michaels to Barbados started at 1806-07-24
Resumo:
Seafloor sediment mobilization on the inner Northwest Iberian continental shelf is caused largely by ocean surface waves. The temporal and spatial variability in the wave height, wave period, and wave direction has a profound effect on local sediment mobilization, leading to distinct sediment mobilization scenarios. Six grain-size specific sediment mobilization scenarios, representing seasonal average and storm conditions, were simulated with a physics-based numerical model. Model inputs included meteorological and oceanographic data in conjunction with seafloor grain-size and the shelf bathymetric data. The results show distinct seasonal variations, most importantly in wave height, leading to sediment mobilization, specifically on the inner shelf shallower than 30 m water depth where up to 49% of the shelf area is mobilized. Medium to severe storm events are modeled to mobilize up to 89% of the shelf area above 150 m water depth. The frequency of each of these seasonal and storm-related sediment mobilization scenarios is addressed using a decade of meteorological and oceanographic data. The temporal and spatial patterns of the modeled sediment mobilization scenarios are discussed in the context of existing geological and environmental processes and conditions to assist scientific, industrial and environmental efforts that are directly affected by sediment mobilization. Examples, where sediment mobilization plays a vital role, include seafloor nutrient advection, recurrent arrival of oil from oil-spill-laden seafloor sediment, and bottom trawling impacts.
Resumo:
Acceleration of Greenland's three largest outlet glaciers, Helheim, Kangerdlugssuaq and Jakobshavn Isbræ, accounted for a substantial portion of the ice sheet's mass loss over the past decade. Rapid changes in their discharge, however, make their cumulative mass-change uncertain. We derive monthly mass balance rates and cumulative balance from discharge and surface mass balance (SMB) rates for these glaciers from 2000 through 2010. Despite the dramatic changes observed at Helheim, the glacier gained mass over the period, due primarily to the short duration of acceleration and a likely longer-term positive balance. In contrast, Jakobshavn Isbræ lost an equivalent of over 11 times the average annual SMB and loss continues to accelerate. Kangerdlugssuaq lost over 7 times its annual average SMB, but loss has returned to the 2000 rate. These differences point to contrasts in the long-term evolution of these glaciers and the danger in basing predictions on extrapolations of recent changes.