11 resultados para Location-dependent control-flow patterns
em Publishing Network for Geoscientific
Resumo:
The AND-1B drill core recovered a 13.57 million year Miocene through Pleistocene record from beneath the McMurdo Ice Shelf in Antarctica (77.9°S, 167.1°E). Varying sedimentary facies in the 1285 m core indicate glacial-interglacial cyclicity with the proximity of ice at the site ranging from grounding of ice in 917 m of water to ice free marine conditions. Broader interpretation of climatic conditions of the wider Ross Sea Embayment is deduced from provenance studies. Here we present an analysis of the iron oxide assemblages in the AND-1B core and interpret their variability with respect to wider paleoclimatic conditions. The core is naturally divided into an upper and lower succession by an expanded 170 m thick volcanic interval between 590 and 760 m. Above 590 m the Plio-Pleistocene glacial cycles are diatom rich and below 760 m late Miocene glacial cycles are terrigenous. Electron microscopy and rock magnetic parameters confirm the subdivision with biogenic silica diluting the terrigenous input (fine pseudo-single domain and stable single domain titanomagnetite from the McMurdo Volcanic Group with a variety of textures and compositions) above 590 m. Below 760 m, the Miocene section consists of coarse-grained ilmenite and multidomain magnetite derived from Transantarctic Mountain lithologies. This may reflect ice flow patterns and the absence of McMurdo Volcanic Group volcanic centers or indicate that volcanic centers had not yet grown to a significant size. The combined rock magnetic and electron microscopy signatures of magnetic minerals serve as provenance tracers in both ice proximal and distal sedimentary units, aiding in the study of ice sheet extent and dynamics, and the identification of ice rafted debris sources and dispersal patterns in the Ross Sea sector of Antarctica.
Resumo:
The ocean plays an important role in modulating the mass balance of the polar ice sheets by interacting with the ice shelves in Antarctica and with the marine-terminating outlet glaciers in Greenland. Given that the flux of warm water onto the continental shelf and into the sub-ice cavities is steered by complex bathymetry, a detailed topography data set is an essential ingredient for models that address ice-ocean interaction. We followed the spirit of the global RTopo-1 data set and compiled consistent maps of global ocean bathymetry, upper and lower ice surface topographies and global surface height on a spherical grid with now 30-arc seconds resolution. We used the General Bathymetric Chart of the Oceans (GEBCO, 2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the Interna- tional Bathymetric Chart of the Southern Ocean (IBCSO) version 1. While RTopo-1 primarily aimed at a good and consistent representation of the Antarctic ice sheet, ice shelves and sub-ice cavities, RTopo-2 now also contains ice topographies of the Greenland ice sheet and outlet glaciers. In particular, we aimed at a good representation of the fjord and shelf bathymetry sur- rounding the Greenland continent. We corrected data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ and Sermilik Fjord assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79°N, we incorporated a high-resolution digital bathymetry model considering original multibeam survey data for the region. Radar data for surface topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centers of Technical University of Denmark (DTU), Operation Icebridge (NASA/NSF) and Alfred Wegener Institute (AWI). For the Antarctic ice sheet/ice shelves, RTopo-2 largely relies on the Bedmap-2 product but applies corrections for the geometry of Getz, Abbot and Fimbul ice shelf cavities.
Resumo:
We constructed biogenic mass accumulation rate (MAR) time series for eastern Pacific core transects across the equator at ~105° and ~85°W and along the equator from 80° to 140°W. We used empirical orthogonal function (EOF) analysis to extract spatially coherent patterns of CaCO3 deposition for the last 150 kyr. EOF mode 1 (51% variance) is a CaCO3 MAR spike centered in marine oxygen isotope stage 2 (MIS 2) found under the South Equatorial Current. EOF mode 2 (19% of variance) is high north of the equator. EOF mode 3 (9% of variance) is an east-west mode centered along the North Equatorial Counter Current. The MIS 2 CaCO3 spike is the largest event in the eastern Pacific for the last 150 kyr: CaCO3 MARs are 2-3 times higher at 18 ka than elsewhere in the record, including MIS 6. It is caused by high CaCO3 production rather than minimal dissolution. EOF 2, while it resembles deep water flow patterns, nevertheless, shows coherence to Corg deposition and is probably also driven by CaCO3 production.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Slowslip forms part of the spectrum of fault behaviour between stable creep and destructive earthquakes. Slow slip occurs near the boundaries of large earthquake rupture zones and may sometimes trigger fast earthquakes. It is thought to occur in faults comprised of rocks that strengthen under fast slip rates, preventing rupture as a normal earthquake, or on faults that have elevated pore-fluid pressures. However, the processes that control slow rupture and the relationship between slow and normal earthquakes are enigmatic. Here we use laboratory experiments to simulate faulting in natural rock samples taken from shallow parts of the Nankai subduction zone, Japan, where very low-frequency earthquakes - a form of slow slip - have been observed.We find that the fault rocks exhibit decreasing strength over millimetre-scale slip distances rather than weakening due to increasing velocity. However, the sizes of the slip nucleation patches in our laboratory simulations are similar to those expected for the very lowfrequency earthquakes observed in Nankai. We therefore suggest that this type of fault-weakening behaviour may generate slow earthquakes. Owing to the similarity between the expected behaviour of slow earthquakes based on our data, and that of normal earthquakes during nucleation, we suggest that some types of slow slip may represent prematurely arrested earthquakes.
Resumo:
Stalagmites are important palaeo-climatic archives since their chemical and isotopic signatures have the potential to record high-resolution changes in temperature and precipitation over thousands of years. We present three U/Th-dated records of stalagmites (MA1-MA3) in the superhumid southern Andes, Chile (53°S). They grew simultaneously during the last five thousand years (ka BP) in a cave that developed in schist and granodiorite. Major and trace elements as well as the C and O isotope compositions of the stalagmites were analysed at high spatial and temporal resolution as proxies for palaeo-temperature and palaeo-precipitation. Calibrations are based on data from five years of monitoring the climate and hydrology inside and outside the cave and on data from 100 years of regional weather station records. Water-insoluble elements such as Y and HREE in the stalagmites indicate the amount of incorporated siliciclastic detritus. Monitoring shows that the quantity of detritus is controlled by the drip water rate once a threshold level has been exceeded. In general, drip rate variations of the stalagmites depend on the amount of rainfall. However, different drip-water pathways above each drip location gave rise to individual drip rate levels. Only one of the three stalagmites (MA1) had sufficiently high drip rates to record detrital proxies over its complete length. Carbonate-compatible element contents (e.g. U, Sr, Mg), which were measured up to sub-annual resolution, document changes in meteoric precipitation and related drip-water dilution. In addition, these soluble elements are controlled by leaching during weathering of the host rock and soils depending on the pH of acidic pore waters in the peaty soils of the cave's catchment area. In general, higher rainfall resulted in a lower concentration of these elements and vice versa. The Mg/Ca record of stalagmite MA1 was calibrated against meteoric precipitation records for the last 100 years from two regional weather stations. Carbonate-compatible soluble elements show similar patterns in the three stalagmites with generally high values when drip rates and detrital tracers were low and vice versa. d13C and d18O values are highly correlated in each stalagmite suggesting a predominantly drip rate dependent kinetic control by evaporation and/or outgassing. Only C and O isotopes from stalagmite MA1 that received the highest drip rates show a good correlation between detrital proxy elements and carbonate-compatible elements. A temperature-related change in rainwater isotope values modified the MA1 record during the Little Ice Age (~0.7-0.1 ka BP) that was ~1.5 °C colder than today. The isotopic composition of the stalagmites MA2 and MA3 that formed at lower drip rates shows a poor correlation with stalagmite MA1 and all other chemical proxies of MA1. 'Hendy tests' indicate that the degassing-controlled isotope fractionation of MA2 and MA3 had already started at the cave roof, especially when drip rates were low. Changing pathways and residence times of the seepage water caused a non-climatically controlled isotope fractionation, which may be generally important in ventilated caves during phases of low drip rates. Our proxies indicate that the Neoglacial cold phases from ~3.5 to 2.5 and from ~0.7 to 0.1 ka BP were characterised by 30% lower precipitation compared with the Medieval Warm Period from 1.2 to 0.8 ka BP, which was extremely humid in this region.
Resumo:
At Ocean Drilling Program (ODP) Site 1090 on the Agulhas Ridge (subantarctic South Atlantic) benthic foraminiferal stable isotope records span the late Oligocene through the early Miocene (25~16 Ma) at a temporal resolution of ?10 kyr. In the same time interval a magnetic polarity stratigraphy can be unequivocally correlated to the geomagnetic polarity timescale (GPTS), thereby providing secure correlation of the isotope record to the GPTS. On the basis of the isotope-magnetostratigraphic correlation we provide refined age calibration of established oxygen isotope events Mi1 through Mi2 as well as several other distinctive isotope events. Our data suggest that the d18O maximum commonly associated with the Oligocene/Miocene (O/M) boundary falls within C6Cn.2r (23.86 Ma). The d13C maximum coincides, within the temporal resolution of our record, with C6Cn.2n/r boundary and hence to the O/M boundary. Comparison of the stable isotope record from ODP Site 1090 to the orbitally tuned stable isotope record from ODP Site 929 across the O/M boundary shows that variability in the two records is very similar and can be correlated at and below the O/M boundary. Site 1090 stable isotope records also provide the first deep Southern Ocean end-member for reconstructions of circulation patterns and late Oligocene to early Miocene climate change. Comparison to previously published records suggests that basin to basin carbon isotope gradients were small or nonexistent and are inconclusive with respect to the direction of deep water flow. Oxygen isotope gradients between sites suggest that the deep Southern Ocean was cold in comparison to the North Atlantic, Indian, and the Pacific Oceans. Dominance of cold Southern Component Deep Water at Site 1090, at least until 17 Ma, suggests that relatively cold circumpolar climatic conditions prevailed during the late Oligocene and early Miocene. We believe that a relatively cold Southern Ocean reflects unrestricted circumpolar flow through the Drake Passage in agreement with bathymetric reconstructions.