4 resultados para Location-aware process modeling
em Publishing Network for Geoscientific
Resumo:
Microalgae CO2 sequestering facilities might become an industrial reality if microalgae biomass could be produced at cost below $500.00 t-1. We develop a model for estimation of total production costs of microalgae as a function of known production-specific expenses, and incorporate into the model the effects of uncontrollable factors which affect known production-specific expenses. Random fluctuations were intentionally incorporated into the model, consequently into generated cost/technology scenarios, because each and every logically interconnected equipment/operation that is used in design/construction/operation/maintenance of a production process is inevitably subject to random cost/price fluctuations which can neither be eliminated nor a priori controlled. A total of 152 costs/technology scenarios were evaluated to find forty four scenarios in which Predicted Total Production Costs of Microalgae (PTPCM) was in the range $200 to $500 t-1 ha-1 y-1. An additional 24 scenarios were found with PTCPM in the range of $102 to $200 t-1 ha-1 y-1. These findings suggest that microalgae CO2 sequestering and the production of commercial compounds from microalgal biomass can be economically viable venture even today when microalgae production technology is still far from its optimum.
Population genetic and dispersal modeling data for Bathymodiolus mussels from the Mid-Atlantic Ridge
Resumo:
The zip folder comprises a text file and a gzipped tar archive. 1) The text file contains individual genotype data for 90 SNPs, 9 microsatellites and the mitochondrial ND4 gene that were determined in deep-sea hydrothermal vent mussels from the Mid-Atlantic Ridge (genus Bathymodiolus). Mussel specimens are grouped according to the population (pop)/location from which they have been sampled (first column). The remaining columns contain the respective allele/haplotype codes for the different genetic loci (names in the header line). The data file is in CONVERT format and can be directly transformed into different input files for population genetic statistics. 2) The tar archive contains NetCDF files with larval dispersal probabilities for simulated annual larval releases between 1998 and 2007. For each simulated vent location (Menez Gwen, Lucky Strike, Rainbow, Vent 1-10) two NetCDF files are given, one for an assumed pelagic larval duration of 1 year and the other one for an assumed pelagic larval duration of 6 months (6m).
Resumo:
Four marine fish species are among the most important on the world market: cod, salmon, tuna, and sea bass. While the supply of North American and European markets for two of these species - Atlantic salmon and European sea bass - mainly comes from fish farming, Atlantic cod and tunas are mainly caught from wild stocks. We address the question what will be the status of these wild stocks in the midterm future, in the year 2048, to be specific. Whereas the effects of climate change and ecological driving forces on fish stocks have already gained much attention, our prime interest is in studying the effects of changing economic drivers, as well as the impact of variable management effectiveness. Using a process-based ecological-economic multispecies optimization model, we assess the future stock status under different scenarios of change. We simulate (i) technological progress in fishing, (ii) increasing demand for fish, and (iii) increasing supply of farmed fish, as well as the interplay of these driving forces under different sce- narios of (limited) fishery management effectiveness. We find that economic change has a substantial effect on fish populations. Increasing aquaculture production can dampen the fishing pressure on wild stocks, but this effect is likely to be overwhelmed by increasing demand and technological progress, both increasing fishing pressure. The only solution to avoid collapse of the majority of stocks is institutional change to improve management effectiveness significantly above the current state. We conclude that full recognition of economic drivers of change will be needed to successfully develop an integrated ecosystem management and to sustain the wild fish stocks until 2048 and beyond.
Resumo:
Strontium isotopic compositions of acetic acid (HOAc) leachate fractions of eight manganese oxide deposits from the modern seafloor, and of twenty-one buried manganese nodules from Cretaceous to Recent sediments in DSDP/ODP cores were measured. ratios of HOAc leachates in all modern seafloor manganese oxides of various origins are identical with present seawater. The ratios of the HOAc leachates of buried nodules from DSDP/ODP cores are significantly lower than those of nodules from the modern seafloor and are mostly identical with coeval seawater values estimated from the age of associated sediments. It is suggested that the buried nodules in DSDP/ODP cores are not artifacts transported from the present seafloor during the drilling process, but are in situ fossil deposits from the past deep-sea floor during Cretaceous to Quaternary periods. The formation of deep-sea fossil nodules prior to the formation of Antarctic Bottom Water (AABW) indicates that the circulation of oxygenated deep seawaters have activately deposited manganese oxides since the Eocene Epoch, or earlier.