3 resultados para Local reaction
em Publishing Network for Geoscientific
Resumo:
Basalts in Hole 648B, located in the rift valley of the Mid-Atlantic Ridge at 23°N in crust estimated to be less than 100,000 years old, are mainly fresh, but small amounts of secondary phases are found on fracture surfaces and in alteration halos within the rocks. The halos are defined by dark bands 1-4 mm thick that have developed parallel to fracture surfaces or pillow margins and which in some cases have migrated some centimeters into the rock. The dark bands are the principal locus of secondary phases. The secondary phases are olive-green and yellow protoceladonites, of composition and structure intermediate between celadonite and iron-rich saponite, red (Mn-poor) to opaque (Mn-rich) iron oxyhydroxides, mixtures of protoceladonite and iron oxyhydroxide, and rare manganese oxides. These phases occur mainly as linings or fillings of open spaces in the basalt within the dark bands. Sulfides and intersertal glass are the only primary phases that can be seen to have been altered. Where dark bands have migrated into the rock, the rock behind the advancing band is almost devoid of secondary phases, implying redissolution. The potassium and magnesium in the secondary phases could have been supplied from ambient seawater. The aluminum in the protoceladonites must have been derived from local reaction of intergranular glass. The source of iron and silica could have been intergranular glass or low temperature mineralizing solutions of the type responsible for the formation of deposits of manganese oxides and iron oxyhydroxides and silicates on the seafloor.
Resumo:
Extinction is a remarkably difficult phenomenon to study under natural conditions. This is because the outcome of stress exposure and associated fitness reduction is not known until the extinction occurs and it remains unclear whether there is any phenotypic reaction of the exposed population that can be used to predict its fate. Here we take advantage of the fossil record, where the ecological outcome of stress exposure is known. Specifically, we analyze shell morphology of planktonic Foraminifera in sediment samples from the Mediterranean, during an interval preceding local extinctions. In two species representing different plankton habitats, we observe shifts in trait state and decrease in variance in association with non-terminal stress, indicating stabilizing selection. At terminal stress levels, immediately before extinction, we observe increased growth asymmetry and trait variance, indicating disruptive selection and bet-hedging. The pre-extinction populations of both species show a combination of trait states and trait variance distinct from all populations exposed to non-terminal levels of stress. This finding indicates that the phenotypic history of a population may allow the detection of threshold levels of stress, likely to lead to extinction. It is thus an alternative to population dynamics in studying and monitoring natural population ecology.
Resumo:
Thermal reaction norms for growth rates of six Emiliania huxleyi isolates originating from the central Atlantic (Azores, Portugal) and five isolates from the coastal North Atlantic (Bergen, Norway) were assessed. We used the template mode of variation model to decompose variations in growth rates into modes of biological interest: vertical shift, horizontal shift, and generalist-specialist variation. In line with the actual habitat conditions, isolates from Bergen (Bergen population) grew well at lower temperatures, and isolates from the Azores (Azores population) performed better at higher temperatures. The optimum growth temperature of the Azores population was significantly higher than that of the Bergen population. Neutral genetic differentiation was found between populations by microsatellite analysis. These findings indicate that E. huxleyi populations are adapted to local temperature regimes. Next to between-population variation, we also found variation within populations. Genotype-by-environment interactions resulted in the most pronounced phenotypic differences when isolates were exposed to temperatures outside the range they naturally encounter. Variation in thermal reaction norms between and within populations emphasizes the importance of using more than one isolate when studying the consequences of global change on marine phytoplankton. Phenotypic plasticity and standing genetic variation will be important in determining the potential of natural E. huxleyi populations to cope with global climate change.