10 resultados para Loading and unloading
em Publishing Network for Geoscientific
Resumo:
An astronomically calibrated timescale has recently been established [Hilgen, 1991, doi:10.1016/0012-821X(91)90082-S; doi:10.1016/0012-821X(91)90206-W] for the Pliocene and earliest Pleistocene based on the correlation of dominantly precession controlled sedimentary cycles (sapropels and carbonate cycles) in Mediterranean marine sequences to the precession time series of the astronomical solution of Berger and Loutre [1991, doi:10.1016/0277-3791(91)90033-Q ] (hereinafter referred to as Ber90). Here we evaluate the accuracy of this timescale by (1) comparing the sedimentary cycle patterns with 65°N summer insolation time series of different astronomical solutions and (2) a cross-spectral comparison between the obliquity-related components in the 65°N summer insolation curves and high-resolution paleoclimatic records derived from the same sections used to construct the timescale. Our results show that the carbonate cycles older than 3.5 m.y. should be calibrated to one precession cycle older than previously proposed. Application of the astronomical solution of Laskar [1990, doi:10.1016/0019-1035(90)90084-M], (hereinafter referred to as La90) with present-day values for the dynamical ellipticity of the Earth and tidal dissipation by the Sun and Moon results in the best fit with the geological record, indicating that this solution is the most accurate from a geological point of view. Application of Ber90, or La90 solutions with dynamical ellipticity values smaller or larger than the present-day value, results in a less obvious fit with the geological record. This implies that the change in the planetary shape of the Earth associated with ice loading and unloading near the poles during the last 5.3 million years was too small to drive the precession into resonance with the perturbation term, s6-g6+g5, of Jupiter and Saturn. Our new timescale results in a slight but significant modification of all ages of the sedimentary cycles, bioevents, reversal boundaries, chronostratigraphic boundaries, and glacial cycles. Moreover, a comparison of this timescale with the astronomical timescales of ODP site 846 [Shackleton et al., 1995, doi:10.2973/odp.proc.sr.138.106.1995; doi:10.2973/odp.proc.sr.138.117.1995] and ODP site 659 [Tiedemann et al., 1994, doi:10.1029/94PA00208] indicates that all obliquity-related glacial cycles prior to ~4.7 Ma in ODP sites 659 and 846 should be correlated with one obliquity cycle older than previously proposed.
Resumo:
At Site 585 in the East Mariana Basin, a 900-m section of Aptian-Albian to Recent sediments was recovered. The upper 590 m are pelagic components (carbonate, siliceous, and clay); small-scale graded sequences and laminations are common. The underlying sediments are volcaniclastic sandstones with a large proportion of shallow-water carbonate debris; sedimentary structures including complete Bouma sequences, cross-laminae, and scouring are common. These structures indicate that the entire section was deposited by turbidity currents. The change in lithology upward in the section reflects the evolution of the surrounding seamounts, from their growth stages during the middle of the Cretaceous to the later subsidence phases. Several black layers containing pyritized organic debris and associated turbidite structures were cored near the Cenomanian/Turonian boundary; this material has been transported from the flanks of the seamounts where it was deposited within a shallow anoxic zone. Seismic data extends the stratigraphy across the entire Basin, showing the reflectors onlapping the seamounts, and indicating at least 1200 m of sediment at Site 585. The crust is placed at 6900 m after correcting for sediment loading, and the subsidence curve indicates that the Basin has been deeper than 5500 m since before the Aptian.
Resumo:
Drilling was undertaken at five sites (739-743) on ODP Leg 119 on a transect across the continental shelf of Prydz Bay, East Antarctica, to elucidate the long-term glacial history of the area and to examine the importance of the area with respect to the development of the East Antarctic ice sheet as a whole. In addition to providing a record of glaciation spanning 36 m.y. or more, Leg 119 has provided information concerning the development of a continental margin under the prolonged influence of a major ice sheet. This has allowed the development of a sedimentary model that may be applicable not only to other parts of the Antarctic continental margin, but also to northern high-latitude continental shelves. The cored glacial sedimentary record in Prydz Bay consists of three major sequences, dominated by diamictite: 1. An upper flat-lying sequence that ranges in thickness from a few meters in inner and western Prydz Bay to nearly 250 m in the outer or eastern parts of the bay. The uppermost few meters consist of Holocene diatom ooze and diatomaceous mud with a minor ice-rafted component overlying diamicton and diamictite of late Miocene to Quaternary age. The diamictite is mainly massive, but stratified varieties and minor mudstone and diatomite also occur. 2. An upper prograding sequence cored at Sites 739 and 743, unconformly below the flat-lying sequence. This consists of a relatively steep (4° inclination) prograding wedge with a number of discrete sedimentary packages. At Sites 739 and 743 the sequence is dominated by massive and stratified diamictite, some of which shows evidence of slumping and minor debris flowage. 3. A lower, more gently inclined, prograding sequence lies unconformably below the flat-lying sequence at Site 742 and the upper prograding sequence at Site 739. This extends to the base of both sites, to 316 and 487 mbsf, respectively. It is dominated by massive, relatively clast-poor diamictite which is kaolinite-rich, light in color, and contains sporadic carbonate-cemented layers. The lower part of Site 742 includes well-stratified diamictites and very poorly sorted mudstones. The base of this site has indications of large-scale soft-sediment deformation and probably represents proximity to the base of the glacial sequence. Facies analysis of the Prydz Bay glacial sequence indicates a range of depositional environments. Massive diamictite is interpreted largely as waterlain till, deposited close to the grounding line of a floating glacier margin, although basal till and debris flow facies are also present. Weakly stratified diamictite is interpreted as having formed close to or under the floating ice margin and influenced by the input of marine diatomaceous sediment (proximal glaciomarine setting). Well-stratified diamictite has a stronger marine input, being more diatom-rich, and probably represents a proximal-distal glaciomarine sediment with the glaciogenic component being supplied by icebergs. Other facies include a variety of mudstones and diatom-rich sediments of marine origin, in which an ice-rafted component is still significant. None of the recovered sediments are devoid of a glacial influence. The overall depositional setting of the prograding sequence is one in which the grounded ice margin is situated close to the shelf edge. Progradation was achieved primarily by deposition of waterlain till. The flat-lying sequence illustrates a complex sequence of advances and retreats across the outer part of the shelf, with intermittent phases of ice loading and erosion. The glacial chronology is based largely on diatom stratigraphy, which has limited resolution. It appears that ice reached the paleoshelf break by earliest Oligocene, suggesting full-scale development of the East Antarctic ice sheet by that time. The ice sheet probably dominated the continental margin for much of Oligocene to middle Miocene time. Retreat, but not total withdrawal of the ice sheet, took place in late Miocene to mid-Pliocene time. The late Pliocene to Pleistocene was characterized by further advances across, and progradation of, the continental shelf. Holocene time has been characterized by reduced glacial conditions and a limited influence of glacial processes on sedimentation.
Resumo:
The Pliocene-Quaternary sediments that we drilled at eight sites in the Gulf of California consist of silty clays to clayey silts, diatomaceous oozes, and mixtures of both types. In this chapter I have summarized various measurements of their physical properties, relating this information to burial depth and effective overburden pressure. Rapid deposition and frequent intercalations of mud turbidites may cause underconsolidation in some cases; overconsolidation probably can be excluded. General lithification begins at depths between 200 and 300 meters sub-bottom, at porosities between 55 and 60% (for silty clays) and as high as 70% (for diatomaceous ooze). Diatom-rich sediments have low strength and very high porosities (70-90%) and can maintain this state to a depth of nearly 400 meters (where the overburden pressure = 1.4 MPa). The field compressibility curves of all sites are compared to data published earlier. Where sediments are affected by basaltic sills, these curves clearly show the effects of additional loading and thermal stress (diagenesis near the contacts). Strength measurements on well-preserved hydraulic piston cores yielded results similar to those obtained on selected samples from standard drilling. Volumetric shrinkage dropped to low values at 100 to 400 meters burial depth (0.3 to 2.0 MPa overburden pressure). Porosity after shrinkage depends on the composition of sediments.
Resumo:
Drilling during Leg 167 at the California margin was scheduled to recover continuous sedimentary sections. Multiple advanced piston core (APC) holes drilled at different depth offsets provided core overlap in successive APCs. Correlation of high-resolution laboratory physical properties data from adjacent APC holes was used to compile composite depth sections for each site. The composite depth sections were used to confirm continuous recovery and enable high-resolution sampling. The meters composite depth (mcd) scale differs from the shipboard meters below seafloor (mbsf) scale because of (1) core expansion following recovery (MacKillop et al., 1995, doi:10.2973/odp.proc.sr.138.118.1995), (2) coring gaps, and (3) stretching/compression of sediment during coring (Lyle, Koizumi, Richter, et al., 1997, doi:10.2973/odp.proc.ir.167.1997). Moran (1997, doi:10.2973/odp.proc.sr.154.132.1997) calculated that sediment expansion accounted for 90%-95% of the Leg 154 depth offset between shipboard mbsf and the mcd scales. Terzaghi's one-dimensional theory of consolidation (Terzaghi, 1943) describes the response of sediments to stress loading and release. Mechanical loading in marine environments is provided by the buoyant weight of the overlying sediments. The load increases with depth below seabed, resulting in sediment volume reduction as water is "squeezed" out of the voids in the sediment. Stress release during core recovery results in expansion of the sediment and volume increase as water returns to the sediment. The sediment expansion or rebound defines the elastic properties of the sediment. In this study we examine the elastic deformation properties of sediments recovered from Sites 1020 and 1021. These results are used to (1) correct the laboratory index properties measurements to in situ values and (2) determine the contribution of sediment rebound to the depth offset between the mbsf and mcd scales.
Resumo:
Substratum of cobalt-manganese crusts penetrated by numerous deep-sea drill holes on the IOAN and Dalmorgeologiya Guyots of Magellan Seamounts in the Pacific Ocean has been studied. Rocks have been characterized, and ferromanganese manifestations developed in the substratum in different forms have been studied in detail. They are considered to be products of deposition of water fluids arising in the volcanic pedestal and unloading on the guyot's periphery when penetrating into top parts of rocks to different degree phosphatized mainly by replacement. It is demonstrated by numerous substratum relicts and remains of organisms in them.
Resumo:
The response of natural CH4 sources to climate changes will be an important factor to consider as concentrations of this potent greenhouse gas continue to increase. Polar ice cores provide the means to assess this sensitivity in the past and have shown a close connection between CH4 levels and northern hemisphere temperature variability over the last glacial cycle. However, the contribution of the various CH4 sources and sinks to these changes is still a matter of debate. Contemporaneous stable CH4 isotope records in ice cores provide additional boundary conditions for assessing changes in the CH4 sources and sinks. Here we present new ice core CH4 isotope data covering the last 160,000 years, showing a clear decoupling between CH4 loading and carbon isotopic variations over most of the record. We suggest that d13CH4 variations were not dominated by a change in the source mix but rather by climate- and CO2-related ecosystem control on the isotopic composition of the methane precursor material, especially in seasonally inundated wetlands in the tropics. In contrast, relatively stable d13CH4 intervals occurred during large CH4 loading changes concurrently with past climate changes implying that most CH4 sources (most notably tropical wetlands) responded simultaneously.
Resumo:
An example of cordierite-bearing gneiss that is part of a high-grade gneiss-migmatite sequence is described from the Hatch Plain in the Read Mountains of the Shackleton Range, Antarctica, for the first time. The cordierite-bearing rocks constitute the more melanosomic portions of the metatectic and migmatitic rocks that are associated with relict granulite facies rocks such as enderbitic granulite and enderbitic garnet granulite. The predominant mineral assemblage in the cordierite-bearing rocks is chemically homogeneous cordierite (XMg 0.61) and biotite (XMg 0.47), strongly zoned garnet (XMg 0.18-0.11), sillimanite, K-feldspar (Or81-94Ab5-18An0.6), plagioclase (An28), and quartz. Inclusions of sillimanite and biotite relics in both garnet and cordierite indicate that garnet and cordierite were produced by the coupled, discontinuous reaction biotite + sillimanite + quartz = cordierite + garnet + K-feldspar + H2O. Various garnet-biotite and garnet-cordierite geothermometers and sillimanite-quartz-plagioclase-garnet-cordierite geobarometers yield a continuous clockwise path in the P-T diagram. The P-T conditions for equilibrium between garnet core and cordierite and between garnet core and biotite during peak metamorphism and migmatization were estimated to be 690 °C at 5-6 kb. This was followed by cooling and unloading with continuously changing conditions down to 515 °C at 2-3 kb. This low-pressure re-equilibration correlates with the pressure conditions evaluated by SCHULZE (1989) for the widespread granitic gneisses of the Read Group in the Shackleton Range. The associated relict enderbitic granulites representing low-pressure type granulite (8 kb; 790 °C) are comparable to similar low-pressure granulites from the East Antarctic craton. They were either formed by under-accretion processes after collision (WELLS 1979, p. 217) or they are a product of remetamorphism at P-T conditions intermediate between granulite and amphibolite facies. A model of a multiple imbrication zone with crustal thickening (CUTHBERT et al. 1983) is discussed for the formation of the relict granulites of the central and eastern Read Mountains which show higher pressure conditions (8-12 kb, SCHULZE & OLESCH 1990), indicating a Proterozoic crustal thickness of at least 40 km.
Resumo:
This paper presents a geotechnical characterization of the glacigenic sediments in Prydz Bay, East Antarctica, based on the shipboard physical properties data obtained during Leg 119, combined with results of land-based analyses of 24 whole-round core samples. Main emphasis is placed on the land-based studies, which included oedometer consolidation tests, triaxial and simple shear tests for undrained shear strength, permeability tests in oedometer and triaxial cell, Atterberg limits, and grain-size analyses. The bulk of the tested sediments comprise overconsolidated diamictites of a relatively uniform lithology. The overconsolidation results from a combination of glacial loading and sediment overburden subsequently removed by extensive glacial erosion of the shelf. This leads to downhole profiles of physical properties that have been observed not to change as a function of the thickness of present overburden. A number of fluctuations in the parameters shows a relatively systematic trend and most likely results from changes in the proximity to the ice sheet grounding line in response to variations in the glacial regime. Very low permeabilities mainly result from high preconsolidation stresses (Pc'). Pc' values up to 10,000 kPa were estimated from the oedometer tests, and empirical estimates based on undrained shear strengths (up to 2500 kPa) indicate that the oedometer results are conservative. The diamictites generally classify as inactive, of low to medium plasticity, and they consolidate with little deformation, even when subjected to great stresses. This is the first report of geotechnical data from deep boreholes on the Antarctic continental shelf, but material of similar character can also be expected in other areas around the Antarctic.
Resumo:
A series of samples from the five sites drilled across the continental shelf and upper slope in Prydz Bay during ODP Leg 119 were consolidation tested in an oedometer. Preconsolidation stresses increase downcore at Sites 739 and 742 in a stepwise manner, and the steps are interpreted to represent periods of increased action of grounded glaciers covering the entire shelf. By the use of theoretical ice sheet surface profiles giving the range of possible ice thicknesses, sediment loading and subsequent erosion seem to be the most important factor for increasing the overconsolidation ratios, and a total glacial erosion exceeding 1 km is possible. Four separate steps in consolidation, here termed "load events" have been identified. The lowermost load event, 1, is correlated to the onset of glaciations reaching the shelf edge and an early period of extensive glaciations, starting in early Oligocene or possibly earlier. Glacial activity related to the buildup of ice in West Antarctica in the late Miocene is tentatively correlated to load event 2. Event 3 is the trace of relatively extensive glacial erosion probably in the Pliocene, whereas the upper step in preconsolidation stress, load event 4, results from the last glaciation reaching the shelf edge, possibly during the late Weichselian. Correlations to other data related to Antarctic glacial history are, however, hampered by the poor age control of the cored diamictites. Consolidation tests may provide a tool for finding the position for hiatuses and unconformities formed subglacially and obscured by subglacial reworking.