427 resultados para Llucià, ca. 120-ca. 190
em Publishing Network for Geoscientific
Resumo:
Increases in the production rate of cosmogenic radionuclides associated with geomagnetic excursions have been used as global tie-points for correlation between records of past climate from marine and terrestrial archives. We have investigated the relative timing of variations in 10Be production rate and the corresponding palaeomagnetic signal during one of the largest Pleistocene excursions, the Iceland Basin (IB) event (ca. 190 kyr), as recorded in two marine sediment cores (ODP Sites 1063 and 983) with high sedimentation rates. Variations in 10Be production rate during the excursion were estimated by use of 230Thxs normalized 10Be deposition rates and authigenic 10Be/9Be. Resulting 10Be production rates are compared with high-resolution records of geomagnetic field behaviour acquired from the same discrete samples. We find no evidence for a significant lock-in depth of the palaeomagnetic signal in these high sedimentation-rate cores. Apparent lock-in depths in other cores may sometimes be the result of lower sample resolution. Our results also indicate that the period of increased 10Be production during the IB excursion lasted longer and, most likely, started earlier than the corresponding palaeomagnetic anomaly, in accordance with previous observations that polarity transitions occur after periods of reduced geomagnetic field intensity prior to the transition. The lack of evidence in this study for a significant palaeomagnetic lock-in depth suggests that there is no systematic offset between the 10Be signal and palaeomagnetic anomalies associated with excursions and reversals, with significance for the global correlation of climate records from different archives.
Resumo:
We explore the applicability of paired Mg/Ca and 18O/16O measurements on benthic foraminifera from Southern Ocean site 747 to paleoceanographic reconstructions on pre-Pleistocene timescales. We focus on the late Oligocene through Pleistocene (27-0 Ma) history of paleotemperatures and the evolution of the d18O values of seawater (d18Osw) at a temporal resolution of ~100-200 kyr. Absolute paleotemperature estimates depend on assumptions of how Mg/Ca ratios of seawater have changed over the past 27 Myr, but relative changes that occur on geologically brief timescales are robust. Results indicate that at the Oligocene to Miocene boundary (23.8 Ma), temperatures lag the increase in global ice-volume deduced from benthic foraminiferal d18O values, but the smaller-scale Miocene glaciations are accompanied by ocean cooling of -1°C. During the mid-Miocene phase of Antarctic ice sheet growth (~15-13 Ma), water temperatures cool by ~3°C. Unlike the benthic foraminiferal d18O values, which remain relatively constant thereafter, temperatures vary (by 3°C) and reach maxima at ~12 and ~8.5 Ma. The onset of significant Northern Hemisphere glaciation during the late Pliocene is synchronous with an ~4°C cooling at site 747. A comparison of our d18Osw curve to the Haq et al. (1987, doi:10.1126/science.235.4793.1156 ) sea level curve yields excellent agreement between sequence boundaries and times of increasing seawater 18O/16O ratios. At ~12-11 Ma in particular, when benthic foraminiferal d18O values do not support a further increase in ice volume, the d18Osw curve comes to a maximum that corresponds to a major mid-Miocene sea level regression. The agreement between the character of our Mg/Ca-based d18Osw curve and sequence stratigraphy demonstrates that benthic foramaniferal Mg/Ca ratios can be used to trace the d18Osw on pre-Pleistocene timescales despite a number of uncertainties related to poorly constrained temperature calibrations and paleoseawater Mg/Ca ratios. The Mg/Ca record also highlights that deep ocean temperatures can vary independently and unexpectedly from ice volume changes, which can lead to misinterpretations of the d18O record.
Resumo:
Four samples of Nauru Basin basalts (Cores 94 to 109 of Hole 462A, sub-bottom depth 1077-1209 m) have 87Sr/86Sr ratios in the range 0.7037 to 0.7038, which is distinctly higher than the ratios of N-type MORB. The Rb contents of the samples are depleted in comparison with those of MORB and ocean-island basalts. These chemical and isotopic characteristics are identical to those of the basalts previously drilled during Leg 61 (Cores 75 to 90 of Hole 462A), and are explained in terms of inhomogeneity of the source region in the mantle or later alteration effects. Sr/Ca-Ba/Ca systematics of 15 samples from Cores 462A-94 to 462A-109 and 14 samples from Cores 462A-75 to 462A-90 suggest that the Nauru Basin basalts are derived from a mantle peridotite by 20 to 30% partial melting with subsequent Plagioclase crystallization.
Resumo:
Constraining the magnitude of high-latitude temperature change across the Eocene-Oligocene transition (EOT) is essential for quantifying the magnitude of Antarctic ice-sheet expansion and understanding regional climate response to this event. To this end, we constructed high-resolution stable oxygen isotope (d18O) and magnesium/calcium (Mg/Ca) records from planktic and benthic foraminifera at four Ocean Drilling Program (ODP) sites in the Southern Ocean. Planktic foraminiferal Mg/Ca records from the Kerguelen Plateau (ODP Sites 738, 744, and 748) show a consistent pattern of temperature change, indicating 2-3 °C cooling in direct conjunction with the first step of a two-step increase in benthic and planktic foraminiferal d18O values across the EOT. In contrast, benthic Mg/Ca records from Maud Rise (ODP Site 689) and the Kerguelen Plateau (ODP Site 748) do not exhibit significant temperature change. The contrasting temperature histories derived from the planktic and benthic Mg/Ca records are not reconcilable, since vertical d18O gradients remained nearly constant at all sites between 35.0 and 32.5 Ma. Based on the coherency of the planktic Mg/Ca records from the Kerguelen Plateau sites and complications with benthic Mg/Ca paleothermometry at low temperatures, the planktic Mg/Ca records are deemed the most reliable measure of Southern Ocean temperature change. We therefore interpret a uniform cooling of 2-3 °C in both deep surface (thermocline) waters and intermediate deep waters of the Southern Ocean across the EOT. Cooling of Southern Ocean surface waters across the EOT was likely propagated to the deep ocean, since deep waters were primarily sourced on the Antarctic margin throughout this time interval. Removal of the temperature component from the observed foraminiferal d18O shift indicates that seawater d18O values increased by 0.6 ± 0.15 per mil across the EOT interval, corresponding to an increase in global ice volume to a level equivalent with 60-130% modern East Antarctic ice sheet volume.