25 resultados para Lipid Mobilization
em Publishing Network for Geoscientific
Resumo:
Female common eiders (Somateria mollissima) starve during the nesting stage and may lose 30-45% of their initial body mass, mostly through lipid mobilization. In this study, the effects of fasting on the blood concentrations of three lipid-soluble organochlorines (OCs: polychlorinated biphenyl [PCB]-153; 1-dichloro-2,2-bis (p-chlorophenyl) ethylene [p,p'-DDE]; and hexachlorobenzene [HCB]) were examined in eiders breeding in the high Arctic. Blood samples were taken from females (n = 47) at day 5 and day 20 of the incubation period. The mean wet weight concentrations of PCB-153 and p,p'-DDE increased strongly between day 5 and day 20 (3.6 and 8.2-fold, respectively), while HCB increased less (1.7-fold). There was a strong negative association between daily increase in PCB-153 and clutch size, and a weaker relationship for p,p'-DDE, suggesting that maternal transfer to the eggs is a significant pathway of elimination of OCs in eiders. Moreover, poor body condition (body mass controlled for body size) late in the incubation period was associated with strong daily increase of both p,p'-DDE and PCB-153, which may suggest that the release of these compounds increases when lipid reserves become depleted. For HCB, the increase was mainly associated with increase in blood lipid concentrations, and weakly to the amount of burned lipids. The causes for the differences between the compounds are, however, poorly understood. Although the absolute levels of OCs in eiders were relatively low, their rapid build-up during incubation is worrying as it coincides with poor body condition and weakened immune systems.
Resumo:
This study of vertical fatty acid profiles, based on analysis of 58 fatty acids sampled at 3-mm intervals throughout the blubber column of a model marine mammal, the ringed seal (Pusa hispida), revealed three chemically distinct layers. The average depths of the outer and inner layers were quite consistent (~1.5 and ~1 cm, respectively). Consequently, the middle layer varied greatly in thickness, from being virtually absent in the thinnest animals to 2.5 cm thick in the fattest. The relative consistencies of the thickness and composition of the layers as well as the nature of the fatty acids making up each layer support the generally assumed function of the various layers: (1) the outer layer is primarily structural and thermoregulatory, (2) the inner layer is metabolically active with a fatty acid composition that is strongly affected by recent/ongoing lipid mobilization/deposition, and (3) the middle layer is a storage site that contracts and expands with food availability/consumption. The remarkable dynamics of the middle layer along with the discrete pattern of stratification found in the vertical fatty acid profiles have important implications for methodological sampling design for studies of foraging ecology and toxicology based on analyses of blubber of marine mammals.
(Table 11) Quantitative comparisons of lipid compositions of DSDP Sections 66-487-2-3 and 66-491-1-5
Resumo:
A comparative study on the lipid composition of the liver and muscles has been performed in daubed shanny caught in summer (July) in Arctic waters at three different sites (biotopes) along the north-western coast of Spitsbergen. In marine organisms living at high latitudes, lipids play an especially important role, primarily as reserve substances and as a factor influencing adaptation to severe environmental conditions. Since the ecology of daubed shanny is poorly known, the data obtained may be considered novel.
Resumo:
The limited knowledge and/or the inability to control physiological condition parameters that influence the fate of organohalogen contaminants (OHCs) has been the foremost confounding aspect in monitoring programs and health risk assessments of wild top predators in the Arctic such as the polar bear (Ursus maritimus). In the present comparative study, we used a potential surrogate Canoidea species for the East Greenland polar bear, the captive sledge dog (Canis familiaris), to investigate some factors that may influence the bioaccumulation and biotransformation of major chlorinated and brominated OHCs in adipose tissue and blood (plasma) of control (fed commercial pork fat) and exposed (fed West Greenland minke whale (Balaenoptera acutorostrata) blubber) adult female sledge dogs. Furthermore, we compared the patterns and concentrations of OHCs and their known or suggested hydroxylated (OH) metabolites (e.g., OH-PCBs) in sledge dogs with those in adipose tissue and blood (plasma) of East Greenland adult female polar bears, and blubber of their main prey species, the ringed seal (Pusa hispida). The two-year feeding regime conducted with sledge dogs led to marked differences in overall adipose tissue (and plasma) OHC residue accumulation between the control and exposed groups. Characteristic prey-to-predator OHC bioaccumulation dynamics for major PCB and PBDE congeners (patterns and concentrations) and biotransformation capacity with respect to PCB metabolite formation and OH-PCB retention distinguished, to some extent, captive sledge dogs and wild polar bears. Based on the present findings, we conclude that the use of surrogate species in toxicological investigations for species in the Canoidea family should be done with great caution, although they remain essential in the context of contaminants research with sensitive arctic top carnivore species such as the polar bear.