62 resultados para Linum usitatissimum L
em Publishing Network for Geoscientific
Resumo:
Lobsigensee is a small kettle hole lake 15 km north-west of Bern on the Swiss Plateau, at an altitude of 514 m asl. Its surface is 2ha today, its maximum depth 2.7 m; it has no inlet and the overflow functions mainly during snow melting. The area was covered by Rhone ice during the Last Glaciation (map in Fig.2). Local geology, climate and vegetation are summarized in Figure 3A-C, the history of settlement in Figures 5-7. In order to reconstruct the vegetational and environmental history of the lake and its surroundings pollen analysis and other bio- and isotope stratigraphies were applied to twelve profiles cored across the basin with modified Livingstone corers (Fig.3 D). (1) The standard diagram: The central core LQ-90 is described as the standard pollen diagram (Chapter 3) with 10 local pollen assemblage zones of the Late-Glacial (local PAZ Ll to Ll0, from about 16'000(7) to 10'000 years BP) and 20 PAZ of the Holocene (local PAZ L11 to L30), see Figs. 8-10 and 20-24. Local PAZ L 1 to L3 are in the Late-Glacial clay and record the vegetational development after the ice retreat: L1 shows very low pollen concentration and high Pinus percentages due to long-distance transport and reworking; the latter mechanism is corroborated by the findings of thermophilous and pre-Quaternary taxa. Local PAZ L2 has a high di versi ty of non-arboreal pollen (NAP) and reflects the Late-Glacial steppe rich in heliophilous species. Local PAZ L3 is similar but additionally rich in Betula nana and Sal1x, thus reflecting a "shrub tundra". The PAZ L1 to L3 belong to the Oldest Dryas biozone. Local PAZ L4 to L 10 are found in the gyttja of the profundal or in the lake marl of the littoral and record the Late-Glacial forests. L4 is the shrub phase of reforestation with very high Junlperus and rapidly increasing Betula percentages. L5 is the PAZ with a first, L7 with a second dominance of tree-birches, separated by L6 showing a depression in the Betula curve. L4 to L7 can be assigned to the Balling biozone. Possible correlation of the Betula depression to the Older Dryas biozone is discussed. In local PAZ L8 Plnus immigrates and expands. L9 shows a facies difference in that Plnus dominates over Betula in littoral but not in profundal spectra. L8 and L9 belong to the Allerod biozone. In its youngest part the volcanic ash from Laach/Eifel is regularly found (11,000 BP). The local PAZ Ll0 corresponds to the Younger Dryas blozone. The merely slight increase of the NAP indicates that the pine forests of the lowland were not strongly affected by a cooler climate. In order to evaluate the significance of the littoral accumulation of coniferous pollen the littoral profile LQ-150 is compared to the profundal. Radiocarbon stratigraphies derived from different materials are presented in Figures 13 and 14 and in Tables 2 and 3. The hard-water errors in the gyttja samples and the carbonate samples are similar. The samples of terrestrial plant macrofossils are not affected by hard-water errors. Two plateaux of constant age appear in the age-depth relationship; their consequence for biostratigraphy as well as pollen concentration and influx diagrams are discussed. Radiocarbon ages of the Late-Glacial pollen zones are shown in Table 10. The Holocene vegetational history is recorded in the local PAZ L 11 to L30. After a Preboreal (PAZ L11) dominated by pine and birch the expansions of Corylus, Ulmus and Quercus are very rapid. Among these taxa Corylus dominates dur ing the Boreal (PAZ L 12 and L 1 3), whereas the components of the mixed oak forest dominate in the Older Atlantic (PAZ L14 to L16). In the Younger Atlantic (PAZ L 17 to L 19) Fagus and Alnus play an increasing, the mixed oak forest a decreasing role. During the period of local PAZ L19 Neolithic settlers lived on the shore of Lobsigensee. During the Subboreal (PAZ L20 and L21) and the Older Subatlantic (L22 to L25) strong fluctuations of Fagus and often antagonistic peaks of NAP, Alnus, Betula and Corylus can be interpreted as signs of human impact on vegetation. L23 is characterized not only by high values of NAP (especially apophytes and anthropochorous species) but also by the appearance of Juglans, Castanea and Secale which point to the Roman colonization of the area. For a certain period during the Younger Subatlantic (PAZ L26 to L30) the lake was used for retting hemp (Cannabis). Later the dominance of Quercus pollen indicates the importance of wood pastures. The youngest sediments reflect the wide-spread agricultural grass lands and the plantation of Pinus and Picea. Radiocarbon dates for the Holocene are given in Figure 23 and Table 4, the extrapolated ages of the Holocene pollen zones in Table 15. (2) The cross sections: Figures 25 and 26 give a summary of the litho- and palynostratigraphy of the two cross sections. Based on 11 Late-Glacial and 9 Holocene pollen diagrams (in addition to the standard ones), the consistency of the criteria for the definition of the pollen zones is examined in Tables 7 and 8 for the Late-Glacial and in Tables 11 to 14 for the Holocene. Sediment thicknesses across the basin for each pollen zone are presented in these tables as well as in Figures 43 to 45 for the Late-Glacial and in Figures 59 to 65 for the Holocene. Sediment focusing can explain differences between the gyttja cores of the profundal. Focusing is more than compensated for through "stretching" by carbonate precipitation on the littoral terrace. Pollen influx to the cross section are discussed (Chapters 4.1.5. and 4.2.3.). (3) The regional pollen zones: Based on some selected sites between Lake Geneva and Lake Constance regional pollen zones are proposed (Table 16, 17 and 19). (4) Paleoecology: Climatic change in the Late-Glacial can be inferred from Coleoptera, Trichoptera, Chironomidae and d18O of carbonates: a distinct warming is recorded around 12' 600 BP and around 10' 000 BP. The Younger Dryas biozone (10'700-10'000 BP) was the only cooling found in the Late-Glacial. The Betula depression often correlated wi th the Older Dryas biozone was possibl not colder but dryer than the previous period. During the Holocene the lowland site is not very sensitive to the minor climatic changes. Table 22 summarizes climatic and trophic changes before 8'000 BP as deduced from various biostratigraphies studied by a number of authors. Ostracods, Chironomids and fossil pigments indicate that anoxic conditions prevailed during the BoIling (possibly meromixis). Changes in the lake level are illustrated in Figure 74. A first lake-level lowering occurred in the early Holocene (10'000 to 9'000 BP), a second during the Atlantic (about 6'800 to 5'200 BP). The first "shrinking" of the lake volume resulted in a eutrophication recorded by laminations in the profundal and by pigments of Cyanophyceae. The second fall in water level corresponds to an increase of Nymphaeaceae. Human impact can be inferred in three ways: eutrophication of the lake (since the Neolithic), changes of terrestrial vegetation by deforestations (cyclicity of Fagus, see Figures 78 to 80), and enhanced erosion (increasing sedimentation rates by inwashed clay, particularly since the Roman Colonization, see Figures 49 and 81). Summary: This paper was planned as the final report on Lobsigensee. However, a number of issues are not answered but can only be asked more precisely, for example: (1) For the two periods with the highest rates of change, Le. the Bolling and the Preboreal biozones, pollen influx may reflect vegetation dynamics. Detailed investigations of these periods in annually laminated sediments are planned. (2) Biostratigraphies other than palynostratigraphy are needed to estimate the degree of linkage or independence in the development of terrestrial and lacustrine ecosystems. Often our sampling intervals were not identical, thus influencing our temporal resolution. (3) 6180- and 14C-stratigraPhies with high resolution will elucidate the leads and lags of these dynamic periods. Plateaux of constant age in the age-depth relationship have a strong bearing on both biological and geophysical understanding of Late-Glacial and early Holocene developments. (4) Numerical methods applied to the pollen diagrams of the cross section will help to quantify the significance of similari ties and dissimilarities across a single basin (with Prof. Birks). (5) Numerical methods applied to different sites on the Swiss Plateau and on the transect across the Alps will be helpful in evaluating the influence of different environmental factors (with Prof. Birks). (6) A new map 1: 1000 with 50cm-contour lines prov ided by Prof. Zurbuchen will be combined with a grid of cores sampling the transition from lake marl to peat enabling us to calculate paleo-volumes of the lake. This is interesting for the two "shrinking periods" (in Fig. 74A numbers 2-6 and 7-10), both accompanied by eutrophication. The pal eo-volume during the Neoli thic set tlement of the Cortaillod culture linked wi th an est l.mate of trophic change derived from diatoms (Prof. Smol in prep.) could possibly give an indication of the size of the human population of this period. (7) For the period with the antagonism between Fagus peaks and ABC-peaks close collaboration between palynologists, geochemists and archeologists should enable us to determine the influence of prehistoric and historic people on vegetation (collaboration with Prof. Stockli and Prof. Herzig). (8) The core LL-75 taken with a "cold letter box" will be analysed for major and trace elements by Dr. Sturm for 210pb and 137Cs by Prof.von Gunten and for pollen. We will see if our local PAZ L30 really corresponds to the surface sediment and if the small seepage lake reflects modern pollution.
Resumo:
In summary, one may conclude that human influence in the Bokanjac area started in the Eneolithic or Earlier Bronze Age - the third to second millennia Cal. BC. Traces of agriculture are weak or missing in the pollen diagram but grazing is indicated. Chestnut and walnut were introduced by humans to the area in classical times. These findings are in general agreement with the results of earlier studies at coastal sites north-west and south-east of Bokanjacko Blato.
Resumo:
A Holocene pollen diagram from Kleiner Mochowsee (northern Niederlausitz, East Germany) shows pine as an important constituent of the woodland south of the Schwielochsee. Oak woodland was widespread since the Atlantic. Betula lost its importance at the end of the Preboreal. Fagus is represented continuously in the pollen record since the Atlantic, Carpinus since the Subboreal. However, the two latter tree species remain without great importance throughout the whole pollen record. The poor sandy soils are furthermore reflected by the low values of Corylus during the Boreal, comparable to other records from Berlin and its surrounding area. The 'classical' elm decline could be shown for the Niederlausitz, radiocarbon dates assume a contemporaneous age for this event with other records from northern Germany. Only small-scaled human impact is indicated in prehistoric times, during the migration period it seems to have ceased completely. Later, in the Medieval, deforestation and tillage can be shown. Secale was cultivated since the early Medieval; an accompanying weed flora appeared at the same time. Cultivation of Fagopyrum and Linum usitatissimum could be shown for the late Medieval times.
Resumo:
1) Ingesamt 11 Profile aus sechs Mooren und Seen im Gebiet des Hannoverschen Wendlandes wurden pollenanalytisch untersucht. Die Ablagerungen umfassen den Zeitraum vom Beginn der Älteren Tundrenzeit bis zur Gegenwart. 2) Die Waldgeschichte des Hannoverschen Wendlandes weist teils Merkmale der atlantisch geprägten Gebiete Nordwestdeutschlands, teils solche des kontinental beeinflußten nordostdeutschen Raumes auf und nimmt damit eine Zwischenstellung ein. 3) Die Kiefer wandert zu Beginn der Allerödzeit ein, d.h. später als im mecklenburgisch-märkischen Gebiet und im mitteldeutschen Trockengebiet. Im Verlauf der Allerödzeit bildeten sich hier wie dort lichte Kiefern-Birken-Wälder aus. 4) In der Jüngeren Tundrenzeit fand zunächst nur eine geringe Auflichtung der Wälder statt, und die Kiefer überwog weiterhin. Erst im späteren Verlauf dieser stadialen Phase breitete sich die Birke aus und verdrängte die Kiefer. Der späte Rückgang der Kiefer stellt eine Parallele zu der Entwicklung in Südostmecklenburg und in der Altmark dar. Die Abgrenzung dieser Phasen in der Jüngeren Tundrenzeit ist durch eine 14C-Datierung gesichert. 5) Noch im Atlantikum ähneln die Diagramme aus dem Gartower Talsandgebiet im Osten des Wendlandes in ihren hohen Kiefernanteilen denen der Sandergebiete in Brandenburg. Die Diagramme aus dem Moränengebiet des westlichen Wendlandes schließen dagegen mehr an die der östlichen Lüneburger Heide und des Hamburger Gebietes an. Dieser Unterschied wird auf edaphische Unterschiede zurückgeführt. 6) Seit dem frühen Subboreal glich auch die Vegetation des Gartower Gebietes mehr den buchenarmen Waldgesellschaften auf sauren Sandböden, wie sie im atlantischen Westen vorkommen. Die Kiefern sind fast ganz aus dem Waldbild verschwunden, wobei der rasche Rückgang zu Beginn des Subboreals sicher zu einem wesentlichen Teil vom Menschen beeinflusst worden ist. Die anschließende kiefernarme Zeit dauerte im gesamten Wendland bis zum Beginn der Kieferaufforstungen in der Neuzeit. 7) In allen untersuchten Diagrammen ist etwa seit dem Subboreal eine Besiedlung nachzuweisen. Diese muß im Osten des Wendlandes intensiver gewesen sein als im Westen. Es lassen sich Phasen geringer und intensiver Besiedlung nachweisen. 8) Seit Beginn des Subboreals ist das Waldbild schon so stark vom Menschen beeinflusst, dass die Ausbreitungsgeschichte der Laubwaldarten nicht ohne Berücksichtigung der Siedlungsphasen diskutiert werden kann. Besonders im Westen bestand eine ausgedehnte Lindenphase, die durch eine Siedlungszeit (Bronzezeit) beendet wurde. Beim folgenden Rückgang der Siedlungsintensität breitet sich bevorzugt die Hainbuche aus, die dann bei der nächsten Besiedlungsphase (Eisenzeit) zurückging. Erst danach erfolgte die maximale Rotbuchenausbreitung, die nur im Westteil des Wendlandes bedeutende Ausmaße zeigte, während im Ostteil rot- und hainbuchenreiche Eichenwälder entstanden. 9) Seit Beginn der mittelalterlichen Besiedlung ist dann der Eingriff des Menschen so stark gewesen, dass die edaphisch bedingten Unterschiede zwischen Moränen- und Sandergebieten im Pollenspektrum verwischt wurden. Sowohl die buchenreichen Wälder des westlichen als auch die buchenarmen Wälder des mittleren und des östlichen Teilgebietes müssen zu fast reinen Eichenwäldern geworden sein. 10) Calluna-Heiden sind im östlichen Wendland schon in vorgeschichtlicher Zeit nachzuweisen. Im Mittelalter und in der Neuzeit treten sie im gesamten Wendland auf. Etwa im 18. und 19. Jahrhundert war die Ausdehnung der Heideflächen am größten. Erst danach wurden sie im Zuge der Kiefernaufforstungen bis auf geringe Reste verdrängt. 11) Während in der spätglazialen Vegetation Juniperus auftritt, ist der Wacholder sowohl in vorgeschichtlicher als auch in geschichtlicher Zeit - im Gegensatz zur Lüneburger Heide - wohl niemals ein Bestandteil der anthropogenen Calluna-Heiden gewesen.