6 resultados para Limit Absorption Systems

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Shallow arctic lakes and ponds have simple and short food webs, but large uncertainties remain about benthic-pelagic links in these systems. We tested whether organic matter of benthic origin supports zooplankton biomass in a pond in NE Greenland, using stable isotope analysis of carbon and nitrogen in the pond itself and in a 13C-enrichment enclosure experiment. In the latter, we manipulated the carbon isotope signature of benthic algae to enhance its isotopic discrimination from other potential food sources for zooplankton. 2. The cladoceran Daphnia middendorffiana responded to the 13C-enrichment of benthic mats with progressively increasing d13C values, suggesting benthic feeding. Stable isotope analysis also pointed towards a negligible contribution of terrestrial carbon to the diet of D. middendorffiana. This agreed with the apparent dominance of autochthonous dissolved organic matter in the pond revealed by analysis of coloured dissolved organic matter. 3. Daily net production by phytoplankton in the pond (18 mg C/m**2/day) could satisfy only up to half of the calculated minimum energy requirements of D. middendorffiana (35 mg C/m**2/day), whereas benthic primary production alone (145 mg C/m**2/day) was more than sufficient. 4. Our findings highlight benthic primary production as a major dietary source for D. middendorffiana in this system and suggest that benthic organic matter may play a key role in sustaining pelagic secondary production in such nutrient-limited high arctic ponds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dataset provides detailed information on the study that was conducted in Lahore's 7 major towns. The sample was taken from 472 tubewells and analyzed for major cations and anions using APHA 2012 techniques as explained herein. Besides, E.coli determination was done to check for microbial contamination. The data includes results from PHREEQC modeling of As(III)/ As(V) species and saturation indices as well as Aquachem's computed hydrochemical water facies. The WHO (2011) and EPA standards included in Aquachem identified the parameters that where in violation. Bicarbonates dominated the groundwater types with 50.21% of the samples exceeding the EPA maximum permissible limit of 250 mg/L in drinking water. Similarly, 30.51% of the samples had TDS values greater than 500 mg/L while 85.38 % of the samples exceed 10 µg/L threshold limit value of arsenic. Also, instances of high magnesium hazard values were observed which requires constant assessment if the groundwater is used for irrigation. Higher than 50% MH values are detrimental to crops which may reduce the expected yields. The membrane filtration technique using m-Endo Agar indicated that 3.59% samples had TNC (too numerous to count) values for E.coli while 5.06% showed values higher than 0 cfu/ 100 ml acceptable value in drinking water. Any traces of E-coli in a groundwater sample indicate recent fecal contamination. Such outcomes signify presence of enteric pathogens. If the groundwater is not properly dosed with disinfectants it may cause harm to human health. It is concluded that more studies are needed and proper groundwater management implement to safeguard the lives of communities that depend solely on groundwater in the city.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coastal upwelling systems account for approximately half of global ocean primary production and contribute disproportionately to biologically driven carbon sequestration. Diatoms, silica-precipitating microalgae, constitute the dominant phytoplankton in these productive regions, and their abundance and assemblage composition in the sedimentary record is considered one of the best proxies for primary production. The study of the sedimentary diatom abundance (SDA) and total organic carbon content (TOC) in the five most important coastal upwelling systems of the modern ocean (Iberia-Canary, Benguela, Peru-Humboldt, California and Somalia-Oman) reveals a global-scale positive relationship between diatom production and organic carbon burial. The analysis of SDA in conjunction with environmental variables of coastal upwelling systems such as upwelling strength, satellite-derived net primary production and surface water nutrient concentrations shows different relations between SDA and primary production on the regional scale. At the global-scale, SDA appears modulated by the capacity of diatoms to take up silicic acid, which ultimately sets an upper limit to global export production in these ocean regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined sediments from Neogene and Quaternary sections of the Benguela and Oman upwelling systems (DSDP Site 532, ODP Sites 723 and 722) to determine environmental and geochemical factors which control and limit pyrite formation in organic-carbon-rich marine sediments. Those samples from the upwelling sites, which contained low to moderate concentrations of total organic carbon (0.7%-3%), had C/S ratios typical of normal marine sediments, i.e., around 2.8. In these sediments, TOC availability probably limited pyrite formation. Results that do not conform with accepted models were found for the sediments high in TOC (3^0-12.4%). The organic matter was of marine origin and contained considerable pyrolytic hydrocarbons, a fact that we take as a sign of low degradation, yet significant concentrations of dissolved sulfate coexisted with it (> 5 mmol/L in the case of Sites 532 and 723). Detrital iron was probably not limiting in either case, because the degree of pyritization was always less than 0.65. Therefore, controls on sulfate reduction and pyrite formation in the organic matter-rich sediments do not appear to conform simply to generally accepted diagenetic models. The data from these thermally immature, old, and organic-rich marine sediments imply that (1) the total reduced sulfur content of organic-rich marine upwelling sediments rarely exceeds an approximate boundary of 1.5% by weight, (2) the C/S ratio of these sediments is not constant and usually much higher than the empirical values proposed for marine sediments. We conclude that sedimentary pyrite formation in upwelling sediments is limited by an as yet unknown factor, and that caution is advised in using C/S ratios and C vs. S diagrams in paleoenvironmental reconstructions for organic-rich sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composition and concentration of colored dissolved organic matter (CDOM) have been determined in Hudson Bay and Hudson Strait by excitation emission matrix spectroscopy (EEM) and parallel factor analysis (PARAFAC). Based on 63 surface samples, PARAFAC identified three fluorescent components, which were attributed to two humic- and one protein-like components. One humic-like component was identified as representing terrestrial organic matter and showed a conservative behaviour in Hudson Bay estuaries. The second humic-like component, traditionally identified as peak M, originated both from land and produced in the marine environment. Component 3 had spectra resembling protein-like material and thought to be plankton-derived. The distribution and composition of CDOM were largely controlled by water mass mixing with protein-like component being the least affected. Distinctive fluorescence patterns were also found between Hudson Bay and Hudson Strait, suggesting different sources of CDOM. The optically active fraction of DOC (both absorbing and fluorescing) was very high in the Hudson Bay (up to 89%) suggesting that fluorescence and absorbance can be used as proxies of the DOC concentration.