444 resultados para Lifetime ratios

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report new data on oxygen isotopes in marine sulfate (delta18O[SO4]), measured in marine barite (BaSO4), over the Cenozoic. The delta18O[SO4] varies by 6x over the Cenozoic, with major peaks 3, 15, 30 and 55 Ma. The delta18O[SO4] does not co-vary with the delta18O[SO4], emphasizing that different processes control the oxygen and sulfur isotopic composition of sulfate. This indicates that temporal changes in the delta18O[SO4] over the Cenozoic must reflect changes in the isotopic fractionation associated with the sulfide reoxidation pathway. This suggests that variations in the aerial extent of different types of organic-rich sediments may have a significant impact on the biogeochemical sulfur cycle and emphasizes that the sulfur cycle is less sensitive to net organic carbon burial than to changes in the conditions of that organic carbon burial. The delta18O[SO4] also does not co-vary with the d18O measured in benthic foraminifera, emphasizing that oxygen isotopes in water and sulfate remain out of equilibrium over the lifetime of sulfate in the ocean. A simple box model was used to explore dynamics of the marine sulfur cycle with respect to both oxygen and sulfur isotopes over the Cenozoic. We interpret variability in the delta18O[SO4] to reflect changes in the aerial distribution of conditions within organic-rich sediments, from periods with more localized, organic-rich sediments, to periods with more diffuse organic carbon burial. While these changes may not impact the net organic carbon burial, they will greatly affect the way that sulfur is processed within organic-rich sediments, impacting the sulfide reoxidation pathway and thus the delta18O[SO4]. Our qualitative interpretation of the record suggests that sulfate concentrations were probably lower earlier in the Cenozoic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied Mg/Ca in high-Mg, shallow-water benthic foraminifera in culture and in samples from natural environments, in order to evaluate the expression of latitudinal and seasonal temperature variability in Mg/Ca in their tests. We cultured Planoglabratella opercularis (d'Orbigny) and Quinqueloculina yabei Asano under controlled temperature (10°-25°C) and salinity (30-38) conditions. Both species show a linear correlation between Mg/Ca and temperature, but they differ in temperature sensitivity. Salinity does not significantly influence Mg/Ca. In the samples collected in nature, Mg/Ca and seawater temperatures are positively correlated, but there are more complexities than in the records for cultured specimens due to such factors as seasonal fluctuations in temperature. We conclude that Mg/Ca ratios in monospecific benthic foraminiferal samples may be used as a reliable temperature proxy, if the lifetime of the species is taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seventeen whole-rock samples, generally taken at 25-50 m intervals from 5 to 560 m sub-basement in Hole 504B, drilled in 6.2 m.y. old crust, were analysed for 87Sr/86Sr ratios, Sr and Rb concentrations, and 18O/16O ratios. Sr isotope ratios for 8 samples from the upper 260 m of the hole range from 0.70287 to 0.70377, with a mean of 0.70320. In the 330-560 m interval, 5 samples have a restricted range of 0.70255-0.70279, with a mean of 0.70266, the average value for fresh mid-ocean ridge basalts (MORB). In the 260-330 m interval, approximately intermediate Sr isotopic ratios are found. Delta18O values (?) range from 6.4 to 7.8 in the upper 260 m, 6.2-6.4 in the 270-320 m interval, and 5.8-6.2 in the 320-560 m interval. The values in the upper 260 m are typical for basalts which have undergone low-temperature seawater alteration, whereas the values for the 320-560 m interval correspond to MORB which have experienced essentially no oxygen isotopic alteration. The higher 87Sr/86Sr and 18O/16O ratios in the upper part of the hole can be interpreted as the result of a greater overall water/rock ratio in the upper part of the Hole 504B crust than in the lower part. Interaction of basalt with seawater (87Sr/86Sr = 0.7091) increased basalt 87Sr/86Sr ratios and produced smectitic alteration products which raised whole-rock delta18O values. Seawater circulation in the lower basalts may have been partly restricted by the greater number of relatively impermeable massive lava flows below about 230 m sub-basement. These flows may have helped to seal off lower basalts from through-flowing seawater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strontium, neodymium, and lead isotope ratios are reported for 13 Leg 115 basalts as well as 3 basalts from Texaco drill hole SM-1 on the Mascarene Plateau. The 87Sr/86Sr ratios and eNd range from 0.70330 to 0.70439 and 5.5 to 7.4, respectively, although 87Sr/86Sr ratios higher than 0.70383 are found only in SM-1 basalts. The high 87Sr/86Sr values are thought to reflect seawater Sr in secondary phases, although all samples were strongly leached in HC1 before analysis. 206Pb/204Pb ratios range from 18.53 to 18.80, and sho high 207Pb/204Pb and 208Pb/204Pb ratios relative to 206Pb/204Pb ratios, typical of Indian Ocean mid-ocean ridge (MORB) and oceanic-island basalts (OIB). Isotopic compositions of Leg 115 basalts generally fall between fields for MORB and Reunion Island basalts, consistent with the conclusion drawn from geochronological studies that Deccan flood basalt volcanism, the Chagos-Laccadive Ridge, and the Mascarene Plateau are all products of the Reunion mantle plume. Isotopic compositions of magmas produced by this plume have varied systematically with time in the direction of less "depleted," less MORB-like isotopic signatures. This compositional change has been accompanied by a decrease in eruption rate. We interpret Deccan volcanism as the voluminous beginning of the plume. Reduced entrainment of asthenosphere following melting of the plume head resulted in less MORB-like isotope ratios in magmas and a decrease in eruptive activity with time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molar ratios of atmospheric gases change during dissolution in water due to differences in their relative solubilities. We exploited this characteristic to develop a tool to clarify the origin of ice formations in permafrost regions. Extracted from ice, molar gas ratios can distinguish buried glacier ice from intrasedimental ground ice formed by freezing groundwaters. An extraction line was built to isolate gases from ice by melting and trapping with liquid He, followed by analysis of N2, O2, Ar, 18O-O2 and 15N-N2, by continuous flow mass spectrometry. The method was tested using glacier ice, aufeis ice (river icing) and intrasedimental ground ice from sites in the Canadian Arctic. O2/Ar and N2/Ar ratios clearly distinguish between atmospheric gas in glacial ice and gases from intrasedimental ground ice, which are exsolved from freezing water. 615NN2 and 618OO2 in glacier ice, aufeis ice and intrasedimental ground ice do not show clear distinguishing trends as they are affected by various physical processes during formation such as gravitational settling, excess air addition, mixing with snow pack, and respiration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present monthly resolved records of strontium/calcium (Sr/Ca) and oxygen isotope (d18O) ratios from well-preserved fossil corals drilled during the Integrated Ocean Drilling Program (IODP) Expedition 310 'Tahiti Sea Level' and reconstruct sea surface conditions in the central tropical South Pacific Ocean during two time windows of the last deglaciation. The two Tahiti corals examined here are uranium/thorium (U/Th)-dated at 12.4 and 14.2 ka, which correspond to the Younger Dryas (YD) cold reversal and the Bølling-Allerød (B-A) warming of the Northern Hemisphere, respectively. The coral Sr/Ca records indicate that annual average sea surface temperature (SST) was 2.6-3.1 °C lower at 12.4 ka and 1.0-1.6 °C lower at 14.2 ka relative to the present, with no significant changes in the amplitude of the seasonal SST cycle. These cooler conditions were accompanied by seawater d18O (d18Osw) values higher by ~0.8 per mill and ~0.6 per mill relative to the present at 12.4 and 14.2 ka, respectively, implying more saline conditions in the surface waters. Along with previously published coral Sr/Ca records from the island [Cohen and Hart (2004), Deglacial sea surface temperatures of the western tropical Pacific: A new look at old coral. Paleoceanography 19, PA4031, doi:10.1029/2004PA001084], our new Tahiti coral records suggest that a shift toward lower SST by ~1.5 °C occurred from 13.1 to 12.4 ka, which was probably associated with a shift toward higher d18Osw by ~0.2 per mill. Along with a previously published coral Sr/Ca record from Vanuatu [Corrège et al. (2004), Interdecadal variation in the extent of South Pacific tropical waters during the Younger Dyras event. Nature 428, 927-929], the Tahiti coral records provide new evidence for a pronounced cooling of the western to central tropical South Pacific during the Northern Hemisphere YD event.