236 resultados para Legal Environment of Distribution,

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dataset contains raster grids in GeoTIFF format describing the benthic environment of South Georgia. The data include topographic layers that are directly calculated from a bathymetry grid (Slope, Aspect, Roughness, Slope, Terrain Ruggedness Index, Topographic Position Index). A benthic classification of the area is included, based on topographic layers. Also included are sea-bed environmental layers that are interpolated from global three dimensional grids (Alkalinity, Apparent Oxygen Utilisation, Omega Aragonite, Omega Calcite, Dissolved Oxygen, Nitrate, pH, Phosphate, Salinity, Silicate, Temperature, and Total CO2). These layers were used to construct a habitat suitability model for Octocorallia. The geographic extent is 43°57'56.65"W - 33°45'38.19"W and 52°47'29.50"S - 56° 9'11.03"S. The spatial resolution is 150m x 150m (except for benthic classification wihch is 450m x 450m). The map projection is EPSG:3762.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Cruise 49 of R/V Dmitry Mendeleev in the Kara Sea (August-September, 1993) chemical-bitumenological studies of bottom sediments were carried out. Hydrocarbons were analyzed by gas-liquid chromatography. It was found on the basis of distribution of n-alkanes and isoprenoids (pristan and phytan) that organic matter is mainly terrigenous consisting of higher plant remains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Near-surface sediments from the equatorial east Atlantic and the Norwegian Sea exhibit pronounced shear strength maxima in profiles from the peak Holocene and Pleistocene. These semi-indurated layers start to occur at 8-102 cm below the sediment surface and can be explained neither by the modal composition nor by the effective overburden pressure of the sediments. However, scanning electron microscope and microprobe data exhibit micritic crusts and crystal carpets, which are clearly restricted to (undisturbed) samples from indurated layers and form a manifest explanation for their origin. The minerals precipitated comprise calcite, aragonite, and in samples more proximal to the African continent SiO2 needles, and needles of as yet unidentified K-Mg-Fe-Al silicates, crusts of which dominate the indurated layers in the Norwegian Sea. By their stratigraphic position in deep-sea sediments the carbonate-based shear strength maxima are tentatively ascribed to dissolved adjacent pteropod layers from the early Holocene and hence to short-lived no-analogue events of early diagenesis. Possibly, they have been controlled by a reduced organic carbon flux, leading to increased aragonite preservation in the deep sea.