1 resultado para Learning Models
em Publishing Network for Geoscientific
Filtro por publicador
- Aberdeen University (2)
- Abertay Research Collections - Abertay University’s repository (3)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (33)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (19)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (32)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (131)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Brock University, Canada (7)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- CentAUR: Central Archive University of Reading - UK (12)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (9)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (26)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (5)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (8)
- Digital Peer Publishing (7)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (12)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (3)
- Ecology and Society (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (2)
- Glasgow Theses Service (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (10)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (11)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (1)
- Open Access Repository of Association for Learning Technology (ALT) (1)
- Open University Netherlands (2)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (7)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (16)
- Repositório da Produção Científica e Intelectual da Unicamp (13)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (7)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (9)
- Scielo Saúde Pública - SP (7)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (3)
- Universidad de Alicante (4)
- Universidad Politécnica de Madrid (24)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (5)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (30)
- Université de Montréal (2)
- Université de Montréal, Canada (8)
- Université Laval Mémoires et thèses électroniques (2)
- University of Canberra Research Repository - Australia (2)
- University of Queensland eSpace - Australia (277)
- University of Southampton, United Kingdom (3)
- University of Washington (11)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (3)
Resumo:
We introduce two probabilistic, data-driven models that predict a ship's speed and the situations where a ship is probable to get stuck in ice based on the joint effect of ice features such as the thickness and concentration of level ice, ice ridges, rafted ice, moreover ice compression is considered. To develop the models to datasets were utilized. First, the data from the Automatic Identification System about the performance of a selected ship was used. Second, a numerical ice model HELMI, developed in the Finnish Meteorological Institute, provided information about the ice field. The relations between the ice conditions and ship movements were established using Bayesian learning algorithms. The case study presented in this paper considers a single and unassisted trip of an ice-strengthened bulk carrier between two Finnish ports in the presence of challenging ice conditions, which varied in time and space. The obtained results show good prediction power of the models. This means, on average 80% for predicting the ship's speed within specified bins, and above 90% for predicting cases where a ship may get stuck in ice. We expect this new approach to facilitate the safe and effective route selection problem for ice-covered waters where the ship performance is reflected in the objective function.