33 resultados para Landsat ETM
em Publishing Network for Geoscientific
Resumo:
The Lena River Delta, situated in Northern Siberia (72.0 - 73.8° N, 122.0 - 129.5° E), is the largest Arctic delta and covers 29,000 km**2. Since natural deltas are characterised by complex geomorphological patterns and various types of ecosystems, high spatial resolution information on the distribution and extent of the delta environments is necessary for a spatial assessment and accurate quantification of biogeochemical processes as drivers for the emission of greenhouse gases from tundra soils. In this study, the first land cover classification for the entire Lena Delta based on Landsat 7 Enhanced Thematic Mapper (ETM+) images was conducted and used for the quantification of methane emissions from the delta ecosystems on the regional scale. The applied supervised minimum distance classification was very effective with the few ancillary data that were available for training site selection. Nine land cover classes of aquatic and terrestrial ecosystems in the wetland dominated (72%) Lena Delta could be defined by this classification approach. The mean daily methane emission of the entire Lena Delta was calculated with 10.35 mg CH4/m**2/d. Taking our multi-scale approach into account we find that the methane source strength of certain tundra wetland types is lower than calculated previously on coarser scales.
Resumo:
Arctic permafrost landscapes are among the most vulnerable and dynamic landscapes globally, but due to their extent and remoteness most of the landscape changes remain unnoticed. In order to detect disturbances in these areas we developed an automated processing chain for the calculation and analysis of robust trends of key land surface indicators based on the full record of available Landsat TM, ETM +, and OLI data. The methodology was applied to the ~ 29,000 km**2 Lena Delta in Northeast Siberia, where robust trend parameters (slope, confidence intervals of the slope, and intercept) were calculated for Tasseled Cap Greenness, Wetness and Brightness, NDVI, and NDWI, and NDMI based on 204 Landsat scenes for the observation period between 1999 and 2014. The resulting datasets revealed regional greening trends within the Lena Delta with several localized hot-spots of change, particularly in the vicinity of the main river channels. With a 30-m spatial resolution various permafrost-thaw related processes and disturbances, such as thermokarst lake expansion and drainage, fluvial erosion, and coastal changes were detected within the Lena Delta region, many of which have not been noticed or described before. Such hotspots of permafrost change exhibit significantly different trend parameters compared to non-disturbed areas. The processed dataset, which is made freely available through the data archive PANGAEA, will be a useful resource for further process specific analysis by researchers and land managers. With the high level of automation and the use of the freely available Landsat archive data, the workflow is scalable and transferrable to other regions, which should enable the comparison of land surface changes in different permafrost affected regions and help to understand and quantify permafrost landscape dynamics.
Resumo:
Breeding distribution of the Adelie penguin, Pygoscelis adeliae, was surveyed with Landsat-7 Enhanced Thematic Mapper Plus (ETM+) data along the coastline of Antarctica, an area covering approximately 330° of longitude. An algorithm was designed to minimize the radiometric contribution from exogenous sources and to retrieve Adelie penguin colony location and spatial extent from the ETM+ data. In all, 9143 individual pixels were classified as belonging to an Adelie penguin colony class out of the entire dataset of 195 ETM+ scenes, where the dimension of each pixel is 30 m by 30 m, and each scene is approximately 180 km by 180 km. Pixel clustering identified a total of 187 individual Adelie penguin colonies, ranging in size from a single pixel (900 m**2) to a maximum of 875 pixels (0.788 km**2). Colony retrievals have a very low error of commission, on the order of 1 percent or less, and the error of omission was estimated to be 2.9 percent by population based on comparisons with direct observations from surveys across east Antarctica. Thus, the Landsat retrievals can successfully locate Adelie penguin colonies that account for ~97 percent of a regional population. Geographic coordinates and the spatial extent of each colony retrieved from the Landsat data are available publically. Regional analysis found several areas where the Landsat retrievals suggest populations that are significantly larger than published estimates. Six Adelie penguin colonies were found that are believed to be unreported in the literature.
Resumo:
Ignoring small-scale heterogeneities in Arctic land cover may bias estimates of water, heat and carbon fluxes in large-scale climate and ecosystem models. We investigated subpixel-scale heterogeneity in CHRIS/PROBA and Landsat-7 ETM+ satellite imagery over ice-wedge polygonal tundra in the Lena Delta of Siberia, and the associated implications for evapotranspiration (ET) estimation. Field measurements were combined with aerial and satellite data to link fine-scale (0.3 m resolution) with coarse-scale (upto 30 m resolution) land cover data. A large portion of the total wet tundra (80%) and water body area (30%) appeared in the form of patches less than 0.1 ha in size, which could not be resolved with satellite data. Wet tundra and small water bodies represented about half of the total ET in summer. Their contribution was reduced to 20% in fall, during which ET rates from dry tundra were highest instead. Inclusion of subpixel-scale water bodies increased the total water surface area of the Lena Delta from 13% to 20%. The actual land/water proportions within each composite satellite pixel was best captured with Landsat data using a statistical downscaling approach, which is recommended for reliable large-scale modelling of water, heat and carbon exchange from permafrost landscapes.
Resumo:
Woodland savannahs provide essential ecosystem functions and services to communities. On the African continent, they are widely utilized and converted to intensive land uses. This study investigates the land cover changes of 108,038 km**2 in NE Namibia using multi-temporal, multi-sensor Landsat imagery, at decadal intervals from 1975 to 2014, with a post-classification change detection method and supervised Regression Tree classifiers. We discuss likely impacts of land tenure and reforms over the past four decades on changes in land use and land cover. These changes included losses, gains and exchanges between predominant land cover classes. Exchanges comprised logical conversions between woodland and agricultural classes, implying woodland clearing for arable farming, cropland abandonment and vegetation succession. The most dominant change was a reduction in the area of the woodland class due to the expansion of the agricultural class, specifically, small-scale cereal and pastoral production. Woodland area decreased from 90% of the study area in 1975 to 83% in 2014, while cleared land increased from 9% to 14%. We found that the main land cover changes are conversion from woodland to agricultural and urban land uses, driven by urban expansion and woodland clearing for subsistence-based agriculture and pastoralism.
Resumo:
Predicting the impact of ongoing anthropogenic CO2 emissions on calcifying marine organisms is complex, owing to the synergy between direct changes (acidification) and indirect changes through climate change (e.g., warming, changes in ocean circulation, and deoxygenation). Laboratory experiments, particularly on longer-lived organisms, tend to be too short to reveal the potential of organisms to acclimatize, adapt, or evolve and usually do not incorporate multiple stressors. We studied two examples of rapid carbon release in the geological record, Eocene Thermal Maximum 2 (~53.2 Ma) and the Paleocene Eocene Thermal Maximum (PETM, ~55.5 Ma), the best analogs over the last 65 Ma for future ocean acidification related to high atmospheric CO2 levels. We use benthic foraminifers, which suffered severe extinction during the PETM, as a model group. Using synchrotron radiation X-ray tomographic microscopy, we reconstruct the calcification response of survivor species and find, contrary to expectations, that calcification significantly increased during the PETM. In contrast, there was no significant response to the smaller Eocene Thermal Maximum 2, which was associated with a minor change in diversity only. These observations suggest that there is a response threshold for extinction and calcification response, while highlighting the utility of the geological record in helping constrain the sensitivity of biotic response to environmental change.
Resumo:
The spatial and temporal dynamics of seagrasses have been well studied at the leaf to patch scales, however, the link to large spatial extent landscape and population dynamics is still unresolved in seagrass ecology. Traditional remote sensing approaches have lacked the temporal resolution and consistency to appropriately address this issue. This study uses two high temporal resolution time-series of thematic seagrass cover maps to examine the spatial and temporal dynamics of seagrass at both an inter- and intra-annual time scales, one of the first globally to do so at this scale. Previous work by the authors developed an object-based approach to map seagrass cover level distribution from a long term archive of Landsat TM and ETM+ images on the Eastern Banks (~200 km**2), Moreton Bay, Australia. In this work a range of trend and time-series analysis methods are demonstrated for a time-series of 23 annual maps from 1988 to 2010 and a time-series of 16 monthly maps during 2008-2010. Significant new insight was presented regarding the inter- and intra-annual dynamics of seagrass persistence over time, seagrass cover level variability, seagrass cover level trajectory, and change in area of seagrass and cover levels over time. Overall we found that there was no significant decline in total seagrass area on the Eastern Banks, but there was a significant decline in seagrass cover level condition. A case study of two smaller communities within the Eastern Banks that experienced a decline in both overall seagrass area and condition are examined in detail, highlighting possible differences in environmental and process drivers. We demonstrate how trend and time-series analysis enabled seagrass distribution to be appropriately assessed in context of its spatial and temporal history and provides the ability to not only quantify change, but also describe the type of change. We also demonstrate the potential use of time-series analysis products to investigate seagrass growth and decline as well as the processes that drive it. This study demonstrates clear benefits over traditional seagrass mapping and monitoring approaches, and provides a proof of concept for the use of trend and time-series analysis of remotely sensed seagrass products to benefit current endeavours in seagrass ecology.
Resumo:
The extent of snow cover at the end of the ablation season on glaciers in the Tyrolean Alps in 1972 and 1973 was determined from Landsat-1 Multispectral Scanner (MSS) images. For snovv mapping the MSS-images with a ground resolution of 80 meters were enlarged to a scale of 1: 100.000 by photographic methods. Different appearance of snow cover in the 4 MSS-channels is discussed in connection with ground truth control. The accuracy of snow and ice mapping from Landsat images was checked on 15 glaciers with an area from 1 to 10 km2 by aerial photography and/or ground truth control. These comparisons imply the usefulness of Landsat images for snow mapping on glaciers of a few square kilometers. The altitude of the equilibrium line was determined from Landsat images for 53 glaciers in the Tyrolean Alps. The regional differences in the equilibrium line altitude correspond to the regional precipitation patterns. The equilibrium line was identical with the snow line at the end of the budget year 1971/1972; therefore it was possible to determine the equilibrium line from satellite images. For 1968/69 the equilibrium line was mapped from aerial photographs for several glaciers. In 1972/73 mass balance was strongly negative and the equilibrimn line was within the firn area of the glaciers. Therefore it was not possible to distinguish between accumulation and ablation areas from the Landsat images of September 1973; however, snow and ice areas could be olearly differentiated. The ratios of accumulation area 01' snow area to the total area of the glaciers were determineel from satellite images and aerial photography separately for aelvancing anel for retreating glaciers and were relateel to the mass balance. In the budget years 1968/69 and 1972/73 with negative mass balance the accumulation area ratios of the advancing glacien; were olearly different from the ratios of the retreating glaciers, in 1971/72 with positive 01' balanced mass budget the differences between advancing and retreating glaciers were not significant.
Resumo:
Long term global archives of high-moderate spatial resolution, multi-spectral satellite imagery are now readily accessible, but are not being fully utilised by management agencies due to the lack of appropriate methods to consistently produce accurate and timely management ready information. This work developed an object-based remote sensing approach to map land cover and seagrass distribution in an Australian coastal environment for a 38 year Landsat image time-series archive (1972-2010). Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery were used without in situ field data input (but still using field knowledge) to produce land and seagrass cover maps every year data were available, resulting in over 60 map products over the 38 year archive. Land cover was mapped annually using vegetation, bare ground, urban and agricultural classes. Seagrass distribution was also mapped annually, and in some years monthly, via horizontal projected foliage cover classes, sand and deep water. Land cover products were validated using aerial photography and seagrass maps were validated with field survey data, producing several measures of accuracy. An average overall accuracy of 65% and 80% was reported for seagrass and land cover products respectively, which is consistent with other studies in the area. This study is the first to show moderate spatial resolution, long term annual changes in land cover and seagrass in an Australian environment, created without the use of in situ data; and only one of a few similar studies globally. The land cover products identify several long term trends; such as significant increases in South East Queensland's urban density and extent, vegetation clearing in rural and rural-residential areas, and inter-annual variation in dry vegetation types in western South East Queensland. The seagrass cover products show that there has been a minimal overall change in seagrass extent, but that seagrass cover level distribution is extremely dynamic; evidenced by large scale migrations of higher seagrass cover levels and several sudden and significant changes in cover level. These mapping products will allow management agencies to build a baseline assessment of their resources, understand past changes and help inform implementation and planning of management policy to address potential future changes.
Resumo:
Wildfires are part of the Mediterranean ecosystem, however, in Israel all wildfires are human caused, either intentionally or un-intentionally. In this study we aimed to develop and test a new method for mapping fire scars from MODIS imagery, to examine the temporal and spatial patterns of wildfires in Israel in the 2000s and to examine the factors controlling Israel's wildfire regime. To map the fires we used two 'off-the-shelf' MODIS fire products as our basis-the 1 km MODIS Collection 5 fire hotspots, the 500 m MCD45A1 burnt areas-and we created a new set of fire scar maps from the 250 m MOD13Q1 product. We carried out a cross comparison of the three MODIS based wildfire scar maps and evaluated them independently against the wild fire scars mapped from 30 m Landsat TM imagery. To examine the factors controlling wildfires we used GIS layers of rainfall, land use, and a Landsat-based national vegetation map. Wildfires occurred in areas where annual rainfall was above 250 mm, mostly in areas with herbaceous vegetation. Wildfire frequency was especially high in the Golan Heights and in the foothills of the Judean mountains, and a high correspondence was found between military training zones and the spatial distribution of fire scars. The use of MODIS satellite images enabled us to map wildfires at a national scale due to the high temporal resolution of the sensor. Our MOD13Q1 based mapping of fire scars adequately mapped large (>1 km**2) fires with accuracies above 80%. Such large fires account for a large proportion of all fires, and pose the greatest threats. This database can aid managers in determining wildfire risks in space and in time.
Resumo:
This data set provides a detailed inventory of lakes in the Lena Delta, northern Siberia, with respect to the lakes' association with one of the three geomorphological main terraces of the Lena Delta. The inventory is based on Landsat-7 ETM+ image data and spatial analysis in a Geographical Information System (GIS). Several morphometric lake attributes were determined from the resulting dataset and statistically analyzed. Significant differences in the morphometric lake characteristics allowed the distinction of a mean lake type for each main terrace. The lake types reflect the special lithological and cryolithological conditions and geomorphological processes prevailing on each terrace. In Morgenstern et al. (2008), special focus was laid on the investigation of lake orientation and the discussion of possible mechanisms for the evolution of the second terrace's oriented lakes.
Resumo:
This dataset provides an inventory of thermo-erosional landforms and streams in three lowland areas underlain by ice-rich permafrost of the Yedoma-type Ice Complex at the Siberian Laptev Sea coast. It consists of two shapefiles per study region: one shapefile for the digitized thermo-erosional landforms and streams, one for the study area extent. Thermo-erosional landforms were manually digitized from topographic maps and satellite data as line features and subsequently analyzed in a Geographic Information System (GIS) using ArcGIS 10.0. The mapping included in particular thermo-erosional gullies and valleys as well as streams and rivers, since development of all of these features potentially involved thermo-erosional processes. For the Cape Mamontov Klyk site, data from Grosse et al. [2006], which had been digitized from 1:100000 topographic map sheets, were clipped to the Ice Complex extent of Cape Mamontov Klyk, which excludes the hill range in the southwest with outcropping bedrock and rocky slope debris, coastal barrens, and a large sandy floodplain area in the southeast. The mapped features (streams, intermittent streams) were then visually compared with panchromatic Landsat-7 ETM+ satellite data (4 August 2000, 15 m spatial resolution) and panchromatic Hexagon data (14 July 1975, 10 m spatial resolution). Smaller valleys and gullies not captured in the maps were subsequently digitized from the satellite data. The criterion for the mapping of linear features as thermo-erosional valleys and gullies was their clear incision into the surface with visible slopes. Thermo-erosional features of the Lena Delta site were mapped on the basis of a Landsat-7 ETM+ image mosaic (2000 and 2001, 30 m ground resolution) [Schneider et al., 2009] and a Hexagon satellite image mosaic (1975, 10 m ground resolution) [G. Grosse, unpublished data] of the Lena River Delta within the extent of the Lena Delta Ice Complex [Morgenstern et al., 2011]. For the Buor Khaya Peninsula, data from Arcos [2012], which had been digitized based on RapidEye satellite data (8 August 2010, 6.5 m ground resolution), were completed for smaller thermo-erosional features using the same RapidEye scene as a mapping basis. The spatial resolution, acquisition date, time of the day, and viewing geometry of the satellite data used may have influenced the identification of thermo-erosional landforms in the images. For Cape Mamontov Klyk and the Lena Delta, thermo-erosional features were digitized using both Hexagon and Landsat data; Hexagon provided higher resolution and Landsat provided the modern extent of features. Allowance of up to decameters was made for the lateral expansion of features between Hexagon and Landsat acquisitions (between 1975 and 2000).