48 resultados para Lake Superior Copper Company

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ca. 1880 Ma Circum-Superior Large Igneous Province (LIP) consists of a number of discontinuous segments known to cover a significant portion of the margin of the Superior Province craton in North America. New geochemical and isotopic data from western segments of this LIP support a common origin for the these segments and suggest that magmatism in the Lake Superior region may have been fed through the ~ 600 km long Pickle Crow dyke from a source north of the Fox River Belt in northeastern Manitoba. The Fox River Belt, Pickle Crow dyke and sections of the Hemlock Formation in the Lake Superior region possess trace element signatures which are similar to those of more recent oceanic plateaux. The Hemlock Formation displays a heterogeneous geochemical signature. This chemical heterogeneity can in part be explained by lithospheric contamination and possibly by source heterogeneity. The tectonomagmatic setting in which these igneous rocks were formed could have involved a mantle plume. Evidence supporting a plume origin includes high MgO volcanic rocks, high calculated degrees of partial melting and geochemical signatures similar to those of oceanic plateaux.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents data on geographic and geologic conditions of modern sedimentation in the Lake Untersee, the largest lake in the East Antarctica. Geochemical and sedimentation data indicate that the leading mechanism supplying aluminosilicate sedimentary material to the surface layer of bottom sediments is seasonal melting of the Anuchin glacier and the mountain glacier on the southeastern part of the valley hosting the lake. Strongly reduced conditions in the lowermost 25 m of the water column in the smaller of two depressions of the lake bottom were favorable for enrichment of the bottom sediments in bacteriogenic organic matter, Mo, Au, and Pd. H2S-contaminated water results to significant enrichment of the sediments only in redox-sensitive elements that are able to migrate in anionic complexes and precipitate (co-precipitate) as sulfides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thirty sediment cores (30-40 cm in length), 47 Ekman dredge sediments, and Mn concretions were collected from Lake Biwa. The concentrations of 36 elements in the samples were determined by instrumental neutron activation, X-ray fluorescence, atomic absorption, and colorimetric analyses. The elements determined included Mn, P, As, Sb, Fe, Ni, Co, Zn, Cu, Pb, Hg, Cr, Ti, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Hf, La, Ce, Sm, Eu, Yb, Lu, U, Th, Au, Ta, Nd, Br and N. Based on statistical considerations and calculation of the concentration factors of the elements, the features of the elemental distribution in Lake Biwa sediment were determined. The main results are summarized as follows : (1) Concentrations of Mn and As were very high in the uppermost oxidized layer of the offshore sediment and Mn concretions. This resulted from the dissolution-deposition cycles of these elements within the sedimentary column and the bottom water. The fixation of As at the sediment surface is mainly attributed to the adsorption of arsenate onto Mn (II) -rich hydrous Mn (IV) oxide. (2) There were high concentrations of Zn, Cu, Pb and Hg in the recent sediments. Although the source of these elements is attributed to human activities, the individual distributions of Zn and Cu in the sediment may result from the deposition of metal-rich planktonic debris and subsequent degradation of the debris. (3) The orders of increasing concentrations of alkali metals and lanthanides in the sediment from the central region compared with the nearshore pediment were identical to the orders of increasing atomic numbers from Na to Cs and from La to Lu, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lake George, New York, is the site of a new discovery of iron-manganese nodules. These nodules occur at a water depth between 21 and 36 m along a stretch of lake extending for about 5 mi north and south of the Narrows, a constricted island-dotted area which separates the north and south Lake George basins. Nodules occur on or within the uppermost 5 cm of a varved glacial clay. Some areas are solidly floored with a carpet of nodules in areas where active currents keep the nodules exposed. The nodules form around nuclei which consist of clay and less commonly of spore capsules, detrital particles, or bark. By their shape we recognize three types of nodules: spherical, discoidal, and lumps. On X-ray examination all nodules show small goethite peaks; in one nodule the manganese mineral birnessite was identified. Manganese and part of the iron appears to be in X-ray amorphous ferromanganese compounds. The Lake George nodules are enriched in iron with respect to marine nodules but are lower in manganese. They have a higher trace element concentration than nodules from other known freshwater lake occurrences, but a lower concentration than marine nodules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lake La Thuile, in the Northern French Prealps (874 m a.s.l.), provides an 18 m long sedimentary sequence spanning the entire Lateglacial/Holocene period. The high resolution multi-proxy (sedimentological, palynological, geochemical) analysis of the uppermost 6.2 meters reveals the Holocene dynamics of erosion in the catchment in response to landscape modifications. The mountain belt is at relevant altitude to study past human activities and the watershed is sufficiently disconnected from large valleys to capture a local sedimentary signal. From 12,000 to 10,000 cal. BP (10 to 8 ka cal. BC), the onset of hardwood species triggered a drop in erosion following the Lateglacial/Holocene transition. From 10,000 to 4500 cal. BP (8 to 2.5 ka cal. BC), the forest became denser and favored slope stabilization while erosion processes were very weak. A first erosive phase was initiated at ca . 4500 cal. BP without evidence of human presence in the catchment. Then, the forest declined at approximately 3000 cal. BP, suggesting the first human influence on the landscape. Two other erosive phases are related to anthropic activities: approximately 2500 cal. BP (550 cal. BC) during the Roman period and after 1600 cal. BP (350 cal. AD) with a substantial accentuation in the Middle Ages. In contrast, the lower erosion produced during the Little Ice Age, when climate deteriorations are generally considered to result in an increased erosion signal in this region, suggests that anthropic activities dominated the erosive processes and completely masked the natural effects of climate on erosion in the late Holocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the climate development over the Holocene in the Northern Hemisphere is well known, palaeolimnological climate reconstructions reveal spatiotemporal variability in northern Eurasia. Here we present a multi-proxy study from north-eastern Siberia combining sediment geochemistry, and diatom and pollen data from lake-sediment cores covering the last 38,000 cal. years. Our results show major changes in pyrite content and fragilarioid diatom species distributions, indicating prolonged seasonal lake-ice cover between ~13,500 and ~8,900 cal. years BP and possibly during the 8,200 cal. years BP cold event. A pollen-based climate reconstruction generated a mean July temperature of 17.8°C during the Holocene Thermal Maximum (HTM) between ~8,900 and ~4,500 cal. years BP. Naviculoid diatoms appear in the late Holocene indicating a shortening of the seasonal ice cover that continues today. Our results reveal a strong correlation between the applied terrestrial and aquatic indicators and natural seasonal climate dynamics in the Holocene. Planktonic diatoms show a strong response to changes in the lake ecosystem due to recent climate warming in the Anthropocene. We assess other palaeolimnological studies to infer the spatiotemporal pattern of the HTM and affirm that the timing of its onset, a difference of up to 3,000 years from north to south, can be well explained by climatic teleconnections. The westerlies brought cold air to this part of Siberia until the Laurentide ice-sheet vanished 7,000 years ago. The apparent delayed ending of the HTM in the central Siberian record can be ascribed to the exceedance of ecological thresholds trailing behind increases in winter temperatures and decreases in contrast in insolation between seasons during the mid to late Holocene as well as lacking differentiation between summer and winter trends in paleolimnological reconstructions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

226Ra is used to document the growth histories of six manganese nodules from Oneida Lake, New York. Detailed sectioning and analysis reveal that there are discontinuous gradients in 226Ra content in these samples. These gradients result from periods of rapid growth (>1 mm/100 years) separated by periods of no growth of erosion. Although the 226Ra 'age' of the nodules approximates the age of Oneida Lake, the nodules are not sediment-covered because they occur only in areas of the lake where fine-grained sediments are not accumulating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The differential solubility of ferromanganese oxides can lead to stratigraphic separation of iron and manganese. Results of chemical analysis of a sequence of ferromanganese nodules overlying iron-rich crusts in northern Green Bay show that selec¬tive ion transport is important in concentrating manganese and associated trace elements near the oxygenated water-sediment interface. Manganese carbonate, which cements ferromanganese nodules, occurs in dark-gray silty sands that are located adjacent to the organic-rich muds of southern Green Bay. These muds contain an average of approximately 3.5 ppm (6x10-5M) interstitial Mn with 2.8 meq/l carbonate alkalinity. Thermodynamic calculation shows that interstitial water approaches equilibrium with MnCO3 in the upper 10 cm of sediment. This carbonate has a composition (Mn73Ca22Fe5)CO3 and has been identified as rhodochrosite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reviews the history, chemical stratification, biology and biogeochemistry of Ace Lake, which is one of the many marine-derived meromictic (permanently stratified) lakes in the Vestfold Hills, Eastern Antarctica. The lake has an area of 18 ha, a maximum depth of 25 m, and a salinity range from 7 to 43 g l**-1. The lake mixes to a depth of 7 m in late winter as a result of brine freeze out during ice formation. Deeper mixing is precluded by a sharp halocline. The water beneath 12 m is permanently anoxic, The lake was formed approximately 10,800 yr BP as the polar ice cap melted. Sea level rise 7,800 yr BP resulted in invasion of seawater into the initially freshwater lake. Subsequently, sea level dropped, and the now saline lake became isolated from the ocean. The biota of the lake was derived from species trapped when the connection between the lake and the ocean was cut off. The oxic zone above 12 m supports a relatively simple community which includes microbial mats, four major species of phytoplankton (including a picocyanobacterium), two copepod species, and a variety of heterotrophic flagellates and ciliates. The anoxic zone contains populations of photosynthetic sulfur, sulfate reducing, fermentative and methanogenic bacteria, which combine to remineralise organic carbon which sediments from the upper waters. Research on the physics, biology and chemistry of Ace Lake has contributed significantly to knowledge of Antarctic meromictic lakes.