39 resultados para Klima-Proxies
em Publishing Network for Geoscientific
Resumo:
Subpolar regions are key areas to study natural climate variability, due to their high sensitivity to rapid environmental changes, particularly through sea surface temperature (SST) variations. Here, we have tested three independent organic temperature proxies (UK'37, TEX86 and LDI) on their potential applicability for SST reconstruction in the subpolar region around Iceland. UK'37, TEX86 and TEXL86 temperature estimates from suspended particulate matter showed a substantial discrepancy with instrumental data, while long chain alkyl diols were below detection limit in most of the stations. In the northern Iceland Basin, sedimenting particles revealed a seasonality in lipid fluxes i.e. high fluxes of alkenones and GDGTs were measured during late spring-summer, and high fluxes of long chain alkyl diols during late summer. The flux-weighted average temperature estimates had a significant negative (ca. 2.3°C for UK'37) and positive (up to 5°C for TEX86) offset with satellite-derived SSTs and temperature estimates derived from the underlying surface sediment. UK'37 temperature estimates from surface sediments around Iceland correlate well with summer mean sea surface temperatures, while TEX86 derived temperatures correspond with both annual and winter mean 0-200 m temperatures, suggesting a subsurface temperature signal. Anomalous LDI-SST values in surface sediments, and low mass flux of 1,13- and 1,15-diols compared to 1,14-diols, suggest that Proboscia diatoms are the major sources of long chain alkyl diols in this area rather than eustigmatophyte algae, and therefore the LDI cannot be applied in this region.
Resumo:
The sedimentary archive from Laguna Potrok Aike is the only continuous record reaching back to the last Glacial period in continental southeastern Patagonia. Located in the path of the Southern Hemisphere westerly winds and in the source region of dust deposited in Antarctica during Glacial periods, southern Patagonia is a vantage point to reconstruct past changes in aeolian activity. Here we use high-resolution rock-magnetic and physical grain size data from site 2 of the International Continental scientific Drilling Program (ICDP) Potrok Aike maar lake Sediment Archive Drilling prOject (PASADO) in order to develop magnetic proxies of dust and wind intensity at 52°S since 51,200 cal BP. Rock-magnetic analysis indicate the magnetic mineral assemblage is dominated by detrital magnetite. Based on the estimated flux of magnetite to the lake and comparison with distal dust records from the Southern Ocean and Antarctica, kLF is interpreted as a dust indicator in the dust source of southern Patagonia at the millennial time scale, when ferrimagnetic grain size and coercivity influence is minimal. Comparison to physical grain-size data indicates that the median destructive field of isothermal remanent magnetisation (MDFIRM) mostly reflects medium to coarse magnetite bearing silts typically transported by winds for short-term suspension. Comparison with wind-intensity proxies from the Southern Hemisphere during the last Glacial period and with regional records from Patagonia since the last deglaciation including marine, lacustrine and peat bog sediments as well as speleothems reveals similar variability with MDFIRM up to the centennial time scale. MDFIRM is interpreted as a wind-intensity proxy independent of moisture changes for southeastern Patagonia, with stronger winds capable of transporting coarser magnetite bearing silts to the lake.
Resumo:
Although the permanently to seasonally ice-covered Arctic Ocean is a unique and sensitive component in the Earth's climate system, the knowledge of its long-term climate history remains very limited due to the restricted number of pre-Quaternary sedimentary records. During Polarstern Expedition PS87/2014, we discovered multiple submarine landslides over a distance of >350 km along Lomonosov Ridge. Removal of younger sediments from steep headwalls has led to exhumation of Miocene to early Quaternary sediments close to the seafloor, allowing the retrieval of such old sediments with gravity cores. Multi-proxy biomarker analyses of these gravity cores reveal for the first time that the late Miocene central Arctic Ocean was relatively warm (4-7°C) and ice-free during summer, whereas sea ice occurred during spring and autumn/winter. A comparison of our proxy data with Miocene climate simulations seems to favour relatively high late Miocene atmospheric CO2 concentrations. These new findings from the Arctic region provide new benchmarks for groundtruthing global climate reconstructions and modeling.
Resumo:
High-amplitude, rapid climate fluctuations are common features of glacial times. The prominent changes in air temperature recorded in the Greenland ice cores (Dansgaard et al., 1993, doi:10.1038/339532a0; Grootes et al., 1993 doi:10.1038/366552a0) are coherent with shifts in the magnitude of the northward heat flux carried by the North Atlantic surface ocean (Bond et al., 1993, doi:10.1038/365143a0; Bond and Lotti, 1995, doi:10.1126/science.267.5200.1005); changes in the ocean's thermohaline circulation are a key component in many explanations of this climate flickering (Broecker, 1997, doi:10.1126/science.278.5343.1582). Here we use stable-isotope and other sedimentological data to reveal specific oceanic reorganizations during these rapid climate-change events. Deep water was generated more or less continuously in the Nordic Seas during the latter part of the last glacial period (60 to 10 thousand years ago), but by two different mechanisms. The deep-water formation occurred by convection in the open ocean during warmer periods (interstadials). But during colder phases (stadials), a freshening of the surface ocean reduced or stopped open-ocean convection, and deep-water formation was instead driven by brine-release during sea-ice freezing. These shifting magnitudes and modes nested within the overall continuity of deep-water formation were probably important for the structuring and rapidity of the prevailing climate changes.
Resumo:
The Cariaco Basin, a silled, permanently anoxic basin on the continental shelf of Venezuela with a dynamic chemocline (-240-350 m), has been subject of > 20 years of oceanographic observation and sediment trap studies. We evaluated UK'37 and the TEX86 temperature proxies using sinking particles collected in shallow sediment trap samples at 275 m (Trap A) and 455 m (Trap B) (within and below the chemocline). The organic geochemical temperature proxies, UK'37. (based on coccolithophorid alkenone lipids) and TEX86 (based on archaeal glycerol dialkyl glycerol tetraether (GDGT) lipids), use observed relationships between the ratio of specific lipids and measured sea surface temperature to hindcast past sea surface temperatures. In this study, both UK'37 and TEX86 temperature proxies record seasonal temperature variations, including the cooling associated with upwelling events. UK'37-based temperatures are colder than measured sea surface temperatures, and better correlated temperature at the chlorophyll maximum. In sediment trap material collected below the chemocline (Trap B), UK'37 values are higher than those in Trap A. Warmer subchemocline UK'37 based temperatures may be related to autooxidation of sinking particles, either by small amounts of available oxygen or by alternate electron acceptors concentrated in the biologically dynamic chemocline (e.g. intermediate sulfur compounds). The absolute flux weighted TEX86 temperature values measured in sinking particles from Trap A match the measured SST well. The differences in the TEX86 values between Traps A and B are small and reflect less impact of degradation. Overall, the TEX86 temperatures in sinking particles in the Cariaco Basin reflect annual SST.
Resumo:
Reconstructing ocean temperature values is a major target in paleoceanography and climate research. However, most temperature proxies are organism-based and thus suffer from an "ecological bias". Multiproxy approaches can potentially overcome this bias but typically require more investment in time and resources, while being susceptible to errors induced by sample preparation steps necessary before analysis. Three lipid-based temperature proxies are widely used: UK'37 (based on long chain alkenones from phytoplanktonic haptophytes), TEX86 [based on glycerol dialkyl glycerol tetraethers (GDGTs) from pelagic archaea] and LDI (based on long chain diols from phytoplanktonic eustigmatophytes). So far, separate analytical methods, including gas chromatography (GC) and liquid chromatography (LC), have been used to determine these proxies. Here we present a sensitive method for determining all three in a single normal phase high performance LC-atmospheric pressure chemical ionization mass spectrometry (NP-HPLC-APCI-MS) analysis. Each of the long chain alkenones and long chain diols was separated and unambiguously identified from the accurate masses and characteristic fragmentation during multiple stage MS analysis (MS2). Comparison of conventional GC and HPLC-MS methods showed similar results for UK'37 and LDI, respectively, using diverse environmental samples and an Emiliania huxleyi culture. Including the three sea surface temperature (SST) proxies; the NP-HPLC-APCI-MS method in fact allows simultaneous determination of nine paleoenvironmental proxies. The extent to which the ecology of the source organisms (ecological bias) influences lipid composition and thereby the reconstructed temperature values was demonstrated by applying the new method to a sediment core from the Sea of Marmara, covering the last 21 kyr BP. Reconstructed SST values differed considerably between the proxies for the Last Glacial Maximum (LGM) and the period of Sapropel S1 formation at ca. 10 kyr BP, whereas the trends during the late Holocene were similar. Changes in the composition of alkenone-producing species at the transition from the LGM to the Bølling/Allerød (B/A) were inferred from unreasonably high UK'37-derived SST values (ca. 20 °C) during the LGM. We ascribe discrepancies between the reconstructed temperature records during S1 deposition to habitat change, e.g. a different depth due to changes in nutrient availability.
Resumo:
The Mediterranean Sea is at the transition between temperate and tropical air masses and as such of importance for studying climate change. The Gulf of Taranto and adjacent SW Adriatic Sea are at the heart of this region. Their sediments are excellently suited for generating high quality environmental records for the last millennia with a sub-decadal resolution. The quality of these records is dependent on a careful calibration of the transfer functions used to translate the sedimentary lipid signals to the local environment. Here, we examine and calibrate the UK'37 and TEX86 lipid-based temperature proxies in 48 surface sediments and relate these to ambient sea surface temperatures and other environmental data. The UK'37-based temperatures in surface sediments reflect winter/spring sea surface temperatures in agreement with other studies demonstrating maximum haptophyte production during the colder season. The TEX86-based temperatures for the nearshore sites also reflect winter sea surface temperatures. However, at the most offshore sites, they correspond to summer sea surface temperatures. Additional lipid and environmental data including the distribution of the BIT index and remote-sensed chlorophyll-a suggest a shoreward increase of the impact of seasonal and spatial variability in nutrients and control of planktonic archaeal abundance by primary productivity, particle loading in surface waters and/or overprint by a cold-biased terrestrial TEX86 signal. As such the offshore TEX86 values seem to reflect a true summer signal to the effect that offshore UK'37 and TEX86 reconstruct winter and summer temperature, respectively, and hence provide information on the annual temperature amplitude.
Resumo:
This study tests the hypothesis that the late Miocene to early Pliocene constriction and closure of the Central American Seaway (CAS), connecting the tropical Atlantic and East quatorial Pacific (EEP), caused a decrease in productivity in the Caribbean, due to decreased coastal upwelling and an end to the connection with high-productivity tropical Pacific waters. The present study compared paleoceanographic proxies for the interval between 8.3 and 2.5 Ma in 47 samples from south Caribbean ODP Site 999 with published data on EEP DSDP Site 503. Proxies for Site 999 include the relative abundance of benthic foraminiferal species representing bottom current velocity and the flux of organic matter to the sea floor, the ratio of infaunal/epifaunal benthic foraminiferal species and benthic foraminifer accumulation rates (BFARs). In addition, we calculated % resistant planktic foraminifers species and used the previously published % sand fraction and benthic carbon isotope values from Site 999. During early shoaling of the Isthmus (8.3-7.9 Ma) the Caribbean was under mesotrophic conditions, with little ventilation of bottom waters and low current velocity. The pre-closure interval (7.6-4.2 Ma) saw enhanced seasonal input of phytodetritus with even more reduced ventilation, and enhanced dissolution between 6.8 and 4.8 Ma. During the post-closure interval (4.2-2.5 Ma) in the Caribbean, paleoproductivity decreased, current velocity was reduced, and ventilation improved, while the seasonality of phytodetrital input was reduced dramatically, coinciding with the establishment of the Atlantic-Pacific salinity contrast at 4.2 Ma. Our data support the hypothesis that late Miocene constriction of the CAS at 7.9 Ma and its closure at 4.2 Ma caused a gradual decrease in paleoproductivity in the Caribbean, consistent with decreased current velocity and seasonality of the phytodetrital input.