8 resultados para Key process indicators
em Publishing Network for Geoscientific
Resumo:
Although conventional sediment parameters (mean grain size, sorting, and skewness) and provenance have typically been used to infer sediment transport pathways, most freshwater, brackish, and marine environments are also characterized by abundant sediment constituents of biological, and possibly anthropogenic and volcanic, origin that can provide additional insight into local sedimentary processes. The biota will be spatially distributed according to its response to environmental parameters such as water temperature, salinity, dissolved oxygen, organic carbon content, grain size, and intensity of currents and tidal flow, whereas the presence of anthropogenic and volcanic constituents will reflect proximity to source areas and whether they are fluvially- or aerially-transported. Because each of these constituents have a unique environmental signature, they are a more precise proxy for that source area than the conventional sedimentary process indicators. This San Francisco Bay Coastal System study demonstrates that by applying a multi-proxy approach, the primary sites of sediment transport can be identified. Many of these sites are far from where the constituents originated, showing that sediment transport is widespread in the region. Although not often used, identifying and interpreting the distribution of naturally-occurring and allochthonous biologic, anthropogenic, and volcanic sediment constituents is a powerful tool to aid in the investigation of sediment transport pathways in other coastal systems.
Resumo:
Given the ubiquity of the parasites and their important fitness consequences on mate and offspring condition, selection for the ability to distinguish healthy from parasitized potential mates is a key process to enhance Darwinian fitness. In this study, we experimentally evaluated how the immunological experience of two potential partners influences mate choice, using the sex-role-reversed pipefish Syngnathus typhle. We exposed S. typhle to immune challenges with heat-killed Vibrio bacteria and investigated whether the activation of the immune system determined mate preferences. Our results demonstrate that the immune status of the potential partners influenced female mate preference, such that females that were exposed to an immune challenge became choosy and favored unchallenged males. Males, however, did not show any preferences for female immune status. In this context, we discuss mate choice decisions and behavioral plasticity as a complex result of immune challenge, severity of infection, as well as trans-generational effects.
Resumo:
Radiocarbon age relationships between co-occurring planktic foraminifera, alkenones, and total organic carbon in sediments from the continental margins of southern Chile, northwest Africa, and the South China Sea were compared with published results from the Namibian margin. Age relationships between the sediment components are site-specific and relatively constant over time. Similar to the Namibian slope, where alkenones have been reported to be 1000-4500 years older than co-occurring foraminifera, alkenones were significantly (~1000 years) older than co-occurring foraminifera in the Chilean margin sediments. In contrast, alkenones and foraminifera were of similar age (within 2 sigma error or better) in the NW African and South China Sea sediments. Total organic matter and alkenone ages were similar off Namibia (age difference TOC alkenones: 200-700 years), Chile (100-450 years), and NW Africa (360-770 years), suggesting minor contributions of preaged terrigenous material. In the South China Sea, total organic carbon is significantly (2000-3000 years) older owing to greater inputs of preaged terrigenous material. Age offsets between alkenones and planktic foraminifera are attributed to lateral advection of organic matter. Physical characteristics of the depositional setting, such as seafloor morphology, shelf width, and sediment composition, may control the age of co-occurring sediment components. In particular, offsets between alkenones and foraminifera appear to be greatest in deposition centers in morphologic depressions. Aging of organic matter is promoted by transport. Age offsets are correlated with organic richness, suggesting that formation of organic aggregates is a key process.
Resumo:
In this study we demonstrate the relevance of lateral particle transport in nepheloid layers for organic carbon (OC) accumulation and burial across high-productive continental margins. We present geochemical data from surface sediments and suspended particles in the bottom nepheloid layer (BNL) from the most productive coastal upwelling area of the modern ocean, the Benguela upwelling system offshore southwest Africa. Interpretation of depositional patterns and comparison of downslope trends in OC content, organic matter composition, and 14C age between suspended particles and surface sediments indicate that lateral particle transport is the primary mechanism controlling supply and burial of OC. We propose that effective seaward particle transport primarily along the BNL is a key process that promotes and maintains local high sedimentation rates, ultimately causing high preservation of OC in a depocenter on the upper slope offshore Namibia. As lateral transport efficiently displaces areas of enhanced OC burial from maximum production at highly productive continental margins, vertical particle flux models do not sufficiently explain the relationship between primary production and shallow-marine OC burial. On geologic time scales, the widest distribution and strongest intensity of lateral particle transport is expected during periods of rapid sea-level change. At times in the geologic past, widespread downslope lateral transport of OC thus may have been a primary driver of enhanced OC burial at deeper continental slopes and abyssal basins.
Resumo:
Dissolution of non-aqueous phase liquids (NAPLs) or gases into groundwater is a key process, both for contamination problems originating from organic liquid sources, and for dissolution trapping in geological storage of CO2. Dissolution in natural systems typically will involve both high and low NAPL saturations and a wide range of pore water flow velocities within the same source zone for dissolution to groundwater. To correctly predict dissolution in such complex systems and as the NAPL saturations change over time, models must be capable of predicting dissolution under a range of saturations and flow conditions. To provide data to test and validate such models, an experiment was conducted in a two-dimensional sand tank, where the dissolution of a spatially variable, 5x5 cm**2 DNAPL tetrachloroethene source was carefully measured using x-ray attenuation techniques at a resolution of 0.2x0.2 cm**2. By continuously measuring the NAPL saturations, the temporal evolution of DNAPL mass loss by dissolution to groundwater could be measured at each pixel. Next, a general dissolution and solute transport code was written and several published rate-limited (RL) dissolution models and a local equilibrium (LE) approach were tested against the experimental data. It was found that none of the models could adequately predict the observed dissolution pattern, particularly in the zones of higher NAPL saturation. Combining these models with a model for NAPL pool dissolution produced qualitatively better agreement with experimental data, but the total matching error was not significantly improved. A sensitivity study of commonly used fitting parameters further showed that several combinations of these parameters could produce equally good fits to the experimental observations. The results indicate that common empirical model formulations for RL dissolution may be inadequate in complex, variable saturation NAPL source zones, and that further model developments and testing is desirable.
Resumo:
Arctic permafrost landscapes are among the most vulnerable and dynamic landscapes globally, but due to their extent and remoteness most of the landscape changes remain unnoticed. In order to detect disturbances in these areas we developed an automated processing chain for the calculation and analysis of robust trends of key land surface indicators based on the full record of available Landsat TM, ETM +, and OLI data. The methodology was applied to the ~ 29,000 km**2 Lena Delta in Northeast Siberia, where robust trend parameters (slope, confidence intervals of the slope, and intercept) were calculated for Tasseled Cap Greenness, Wetness and Brightness, NDVI, and NDWI, and NDMI based on 204 Landsat scenes for the observation period between 1999 and 2014. The resulting datasets revealed regional greening trends within the Lena Delta with several localized hot-spots of change, particularly in the vicinity of the main river channels. With a 30-m spatial resolution various permafrost-thaw related processes and disturbances, such as thermokarst lake expansion and drainage, fluvial erosion, and coastal changes were detected within the Lena Delta region, many of which have not been noticed or described before. Such hotspots of permafrost change exhibit significantly different trend parameters compared to non-disturbed areas. The processed dataset, which is made freely available through the data archive PANGAEA, will be a useful resource for further process specific analysis by researchers and land managers. With the high level of automation and the use of the freely available Landsat archive data, the workflow is scalable and transferrable to other regions, which should enable the comparison of land surface changes in different permafrost affected regions and help to understand and quantify permafrost landscape dynamics.
Resumo:
In 2005, the International Ocean Colour Coordinating Group (IOCCG) convened a working group to examine the state of the art in ocean colour data merging, which showed that the research techniques had matured sufficiently for creating long multi-sensor datasets (IOCCG, 2007). As a result, ESA initiated and funded the DUE GlobColour project (http://www.globcolour.info/) to develop a satellite based ocean colour data set to support global carbon-cycle research. It aims to satisfy the scientific requirement for a long (10+ year) time-series of consistently calibrated global ocean colour information with the best possible spatial coverage. This has been achieved by merging data from the three most capable sensors: SeaWiFS on GeoEye's Orbview-2 mission, MODIS on NASA's Aqua mission and MERIS on ESA's ENVISAT mission. In setting up the GlobColour project, three user organisations were invited to help. Their roles are to specify the detailed user requirements, act as a channel to the broader end user community and to provide feedback and assessment of the results. The International Ocean Carbon Coordination Project (IOCCP) based at UNESCO in Paris provides direct access to the carbon cycle modelling community's requirements and to the modellers themselves who will use the final products. The UK Met Office's National Centre for Ocean Forecasting (NCOF) in Exeter, UK, provides an understanding of the requirements of oceanography users, and the IOCCG bring their understanding of the global user needs and valuable advice on best practice within the ocean colour science community. The three year project kicked-off in November 2005 under the leadership of ACRI-ST (France). The first year was a feasibility demonstration phase that was successfully concluded at a user consultation workshop organised by the Laboratoire d'Océanographie de Villefranche, France, in December 2006. Error statistics and inter-sensor biases were quantified by comparison with insitu measurements from moored optical buoys and ship based campaigns, and used as an input to the merging. The second year was dedicated to the production of the time series. In total, more than 25 Tb of input (level 2) data have been ingested and 14 Tb of intermediate and output products created, with 4 Tb of data distributed to the user community. Quality control (QC) is provided through the Diagnostic Data Sets (DDS), which are extracted sub-areas covering locations of in-situ data collection or interesting oceanographic phenomena. This Full Product Set (FPS) covers global daily merged ocean colour products in the time period 1997-2006 and is also freely available for use by the worldwide science community at http://www.globcolour.info/data_access_full_prod_set.html. The GlobColour service distributes global daily, 8-day and monthly data sets at 4.6 km resolution for, chlorophyll-a concentration, normalised water-leaving radiances (412, 443, 490, 510, 531, 555 and 620 nm, 670, 681 and 709 nm), diffuse attenuation coefficient, coloured dissolved and detrital organic materials, total suspended matter or particulate backscattering coefficient, turbidity index, cloud fraction and quality indicators. Error statistics from the initial sensor characterisation are used as an input to the merging methods and propagate through the merging process to provide error estimates for the output merged products. These error estimates are a key component of GlobColour as they are invaluable to the users; particularly the modellers who need them in order to assimilate the ocean colour data into ocean simulations. An intensive phase of validation has been undertaken to assess the quality of the data set. In addition, inter-comparisons between the different merged datasets will help in further refining the techniques used. Both the final products and the quality assessment were presented at a second user consultation in Oslo on 20-22 November 2007 organised by the Norwegian Institute for Water Research (NIVA); presentations are available on the GlobColour WWW site. On request of the ESA Technical Officer for the GlobColour project, the FPS data set was mirrored in the PANGAEA data library.
Resumo:
Ocean acidification, the drop in seawater pH associated with the ongoing enrichment of marine waters with carbon dioxide from fossil fuel burning, may seriously impair marine calcifying organisms. Our present understanding of the sensitivity of marine life to ocean acidification is based primarily on short-term experiments, in which organisms are exposed to increased concentrations of CO2. However, phytoplankton species with short generation times, in particular, may be able to respond to environmental alterations through adaptive evolution. Here, we examine the ability of the world's single most important calcifying organism, the coccolithophore Emiliania huxleyi, to evolve in response to ocean acidification in two 500-generation selection experiments. Specifically, we exposed E. huxleyi populations founded by single or multiple clones to increased concentrations of CO2. Around 500 asexual generations later we assessed their fitness. Compared with populations kept at ambient CO2 partial pressure, those selected at increased partial pressure exhibited higher growth rates, in both the single- and multiclone experiment, when tested under ocean acidification conditions. Calcification was partly restored: rates were lower under increased CO2 conditions in all cultures, but were up to 50% higher in adapted compared with non-adapted cultures. We suggest that contemporary evolution could help to maintain the functionality of microbial processes at the base of marine food webs in the face of global change.