5 resultados para Kelvin ship wave patterns
em Publishing Network for Geoscientific
Resumo:
Seafloor sediment mobilization on the inner Northwest Iberian continental shelf is caused largely by ocean surface waves. The temporal and spatial variability in the wave height, wave period, and wave direction has a profound effect on local sediment mobilization, leading to distinct sediment mobilization scenarios. Six grain-size specific sediment mobilization scenarios, representing seasonal average and storm conditions, were simulated with a physics-based numerical model. Model inputs included meteorological and oceanographic data in conjunction with seafloor grain-size and the shelf bathymetric data. The results show distinct seasonal variations, most importantly in wave height, leading to sediment mobilization, specifically on the inner shelf shallower than 30 m water depth where up to 49% of the shelf area is mobilized. Medium to severe storm events are modeled to mobilize up to 89% of the shelf area above 150 m water depth. The frequency of each of these seasonal and storm-related sediment mobilization scenarios is addressed using a decade of meteorological and oceanographic data. The temporal and spatial patterns of the modeled sediment mobilization scenarios are discussed in the context of existing geological and environmental processes and conditions to assist scientific, industrial and environmental efforts that are directly affected by sediment mobilization. Examples, where sediment mobilization plays a vital role, include seafloor nutrient advection, recurrent arrival of oil from oil-spill-laden seafloor sediment, and bottom trawling impacts.
Resumo:
Abyssal mud waves (or fine-grained sediment waves) are often cited as evidence for deep current activity because subbottom profiles show that the wave form has migrated with time. The migration history of a fine-grained sediment wave on the Blake-Bahama Outer Ridge (ODP Site 1062) has been studied through the analysis of multiple ODP holes spaced across the wave. Additional information about wave migration patterns comes from 3.5-kHz records and watergun seismic profiles. These data suggest that wave migration has varied during the last not, vert, similar ~10 Myr, although the only sediments sampled are younger than 4.8 Ma. Seismic profiles suggest wave migration was initiated about 8-10 Ma, and wave migration was pronounced from about 5 Ma to about 1 Ma (with an episode of wave reorganization about 4.5 Ma). Analysis of ODP cores suggests that migration rates have been somewhat lower and more variable during the last 1 Myr. Intervals of no wave migration are observed for several time intervals and appear to characterize deglaciations, especially during the last 500 kyr. Comparisons between seismic profiles and the core record show that most of the seismic horizons correlate closely with time horizons, and thus that the seismic profiles give a reasonable representation of sediment wave migration. Models suggest that wave migration is more pronounced during periods of higher bottom current flow and less pronounced during periods of lower current flow. Thus the migration record is consistent with generally higher bottom flow speeds at this site prior to 1 Ma and lower bottom flow speeds after 1 Ma. The Mid-Pleistocene Transition from a dominant climatic periodicity of 40 kyr to a dominant climatic periodicity of 100 kyr starts at about this time, suggesting an overall reduction in bottom flow speed at this site coincident with changing climate patterns. These changes in flow speed could be related to changes in the depth of the Western Boundary Undercurrent as well as to changes in the speed of thermohaline circulation.
Resumo:
The Climatological Database for the World's Oceans: 1750-1854 (CLIWOC) project, which concluded in 2004, abstracted more than 280,000 daily weather observations from ships' logbooks from British, Dutch, French, and Spanish naval vessels engaged in imperial business in the eighteenth and nineteenth centuries. These data, now compiled into a database, provide valuable information for the reconstruction of oceanic wind field patterns for this key period that precedes the time in which anthropogenic influences on climate became evident. These reconstructions, in turn, provide evidence for such phenomena as the El Niño-Southern Oscillation and the North Atlantic Oscillation. Of equal importance is the finding that the CLIWOC database the first coordinated attempt to harness the scientific potential of this resource represents less than 10 percent of the volume of data currently known to reside in this important but hitherto neglected source.
Resumo:
In May and June 1936 Dr. C. S. Piggot of the Geophysical Laboratory, Carnegie Institution of Washington, took a series of 11 deep-sea cores in the North Atlantic Ocean between the Newfoundland banks and the banks off the Irish coast. These cores were taken from the Western Union Telegraph Co.'s cable ship Lord Kelvin with the explosive type of sounding device which Dr. Piggot designed. All but two of these cores (Nos. 8 and 11) are more than 2.43 meters (8 feet) long, and all contain ample material for study. Of the two short cores, No. 8 was taken from the top of the Faraday Hills, as that part of the mid-Atlantic ridge is known, where the material is closely packed and more sandy and consequently more resistant; No. 11 came from a locality where the apparatus apparently landed on volcanic rock that may be part of a submarine lava flow.