936 resultados para KAL

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sediment cores 225514 and 225510 were recovered from 420 and 285 m water depth, respectively. They were investigated for their benthic foraminiferal delta13C during the last 500 years. Both cores were recovered from the southern flank of the Skagerrak. The delta13C values of Uvigerina mediterranea and other shallow infaunal species in both cores indicate that organic matter rain rates to the seafloor varied around a mean value until approximately AD 1950 after which they increased. This increase might result from changes in the North Atlantic Current System and a co-occurring persistently high North Atlantic Oscillation index state in the 1980s to 1990s, rather than from anthropogenic eutrophication. Using delta13C mean values of multiple species, we reconstruct delta13C gradients of dissolved inorganic carbon (DIC) within pore waters for the time periods AD 1500 to 1950 and AD 1950 to 2000. The calculated delta13CDIC ranges, interpreted as indicating total organic matter remineralization due to respiration, are generally bigger in Core 225514 than in Core 225510. Since mean delta13C values of U. mediterranea suggest that organic matter rain rates were similar at both locations, differences in total organic matter remineralization are attributed to differing oxygen availability. However, oxygen concentrations in the overlying bottom water masses are not likely to have differed significantly. Thus, we suggest that organic matter remineralization was controlled by oxygen availability within the sediments, reflecting strong differences in sedimentation rates at the two investigated core sites. Based on the assumptions that tests of benthic foraminiferal species inhabiting the same microhabitat depth should show equal delta13C values unless they are affected by vital effects and that Globobulimina turgida records pore water delta13CDIC, we estimate microhabitat-corrected vital effects for several species with respect to G. turgida: >0.7 per mil for Cassidulina laevigata, >1.3 per mil for Hyalinea balthica, and >0.7 per mil for Melonis barleeanus. Melonis zaandami seems to closely record pore water delta13CDIC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benthic foraminiferal tests of a sediment core from southwestern Skagerrak (northeastern North Sea, 420 m water depth) were investigated for their ratio of stable oxygen isotopes. During modern times sudden drops in temperature and salinity of Skagerrak deep waters point to advection-induced cascades of colder and denser central North Sea waters entering the Skagerrak. These temperature drops, which are recorded in benthic foraminiferal tests via the stable oxygen isotopic composition, were used to reconstruct deep-water renewal in the Skagerrak. In a second step we will show that, at least during the last 1200 years, Skagerrak deep-water renewal is triggered by the negative phase of the North Atlantic Oscillation (NAO). The NAO exerts a strong influence on the climate of northwestern Europe. It is currently under debate if the long-term variability of the NAO is capable of influencing Northern Hemisphere climate on long timescales. The data presented here cannot reinforce these speculations. Our data show that most of the 'Little Ice Age' was dominated by comparably warm deep-water temperatures. However, we did find extraordinary strong temperature differences between central North Sea waters and North Atlantic water masses during this time interval.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new record of eolian dust flux to the western Subarctic North Pacific (SNP) covering the past 27000 years based on a core from the Detroit Seamount. Comparing the SNP dust record to the NGRIP ice core record shows significant differences in the amplitude of dust changes to the two regions during the last deglaciation, while the timing of abrupt changes is synchronous. If dust deposition in the SNP faithfully records its mobilization in East Asian source regions, then the difference in the relative amplitude must reflect climate-related changes in atmospheric dust transport to Greenland. Based on the synchronicity in the timing of dust changes in the SNP and Greenland, we tie abrupt deglacial transitions in the 230Th-normalized 4He flux record to corresponding transitions in the well-dated NGRIP dust flux record to provide a new chronostratigraphic technique for marine sediments from the SNP. Results from this technique are complemented by radiocarbon dating, which allows us to independently constrain radiocarbon paleoreservoir ages. We find paleoreservoir ages of 745 ± 140 yr at 11653 yr BP, 680 ± 228 yr at 14630 yr BP and 790 ± 498 yr at 23290 yr BP. Our reconstructed paleoreservoir ages are consistent with modern surface water reservoir ages in the western SNP. Good temporal synchronicity between eolian dust records from the Subantarctic Atlantic and equatorial Pacific and the ice core record from Antarctica supports the reliability of the proposed dust tuning method to be used more widely in other global ocean regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The upper Holocene marine section from a kasten core taken from the oxygen minimum zone off Karachi (Pakistan) at water depth 700 m contains continuously laminated sediments with a sedimentation rate of 1.2 mm/yr and a unique record of monsoonal climatic variability covering the past 5000 years. Our chronostratigraphy is based on varve counts verified by conventional and AMS14C dating. Individual hemipelagic varve couplets are about 0.8-1.5 mm thick, with light-colored terrigenous laminae (A) deposited mainly during the winter monsoon alternating with dark-colored laminae (B) rich in marine organic matter, coccoliths, and fish debris that reflect deposition during the high-productivity season of the late summer monsoon (August-October). Precipitation and river runoff appear to control varve thickness and turbidite frequency. We infer that precipitation decreased in the river watershed (indicated by thinning varves) after 3500-4000 yr B.P. This is about the time of increasing aridification in the Near East and Middle East, as documented by decreasing Nile River runoff data and lake-level lowstands between Turkey and northwestern India. This precipitation pattern continued until today with precipitation minima about 2200-1900 yr B.P., 1000 yr B.P., and in the late Middle Ages (700-400 yr B.P.), and precipitation maxima in the intervening periods. As documented by spectral analysis, the thickness of varve couplets responds to the average length of a 250-yr cycle, a 125-yr cycle, the Gleissberg cycle of solar activity (95 yr), and a 56-yr cycle of unknown origin. Higher frequency cycles are also present at 45, 39, 29-31, and 14 yr. The sedimentary gray-value also shows strong variability in the 55-yr band plus a 31-yr cycle. Because high-frequency cyclicity in the ENSO band (ca. 3.5 and 5 yr) is only weakly expressed, our data do not support a straightforward interaction of the Pacific ENSO with the monsoon-driven climate system of the Arabian Sea.