11 resultados para Joy.

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The late Miocene to early Pliocene carbonate-rich sediments recovered at Integrated Ocean Drilling Program (IODP) Site U1338 during the Expedition 320/321 Pacific Equatorial Age Transect (PEAT) program contain abundant calcareous nanno- and microfossils. Geochemical proxies from benthic and planktonic foraminiferal and coccolithophore calcite could be very useful at this location; however, good preservation of the calcite is crucial for the proxies to be robust. Here, we evaluate the preservation of specific benthic and planktonic foraminifer species and coccolithophores in fine fraction sediment at Site U1338 using backscattered electron (topography mode) scanning electron microscopy (BSE-TOPO SEM). Both investigated foraminiferal species, Cibicidoides mundulus and Globigerinoides sacculifer, have undergone some alteration. The C. mundulus show minor evidence for dissolution, and only some specimens show evidence of overgrowth. The Gs. sacculifer show definite signs of alteration and exhibit variable preservation, ranging from fair to poor; some specimens show minor overgrowth and internal recrystallization but retain original features such as pores, spine pits, and internal test-wall growth structure, whereas in other specimens the recrystallization and overgrowth disguise many of the original features. Secondary electron and BSE-TOPO SEM images show that coccolith calcite preservation is moderate or moderate to poor. Slight to moderate etching has removed central heterococcolith features, and a small amount of secondary overgrowth is also visible. Energy dispersive spectroscopy analyses indicate that the main sedimentary components of the fine fraction sediment are biogenic CaCO3 and SiO2, with some marine barite. Based on the investigations in this data report, geochemical analyses on benthic foraminifers are unlikely to be affected by preservation, although geochemical analyses on the planktonic foraminifers should be treated cautiously because of the fair to poor and highly variable preservation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dataset contains the collection of available published paired Uk'37 and Tex86 records spanning multi-millennial to multi-million year time scales, as well as a collection of Mg/Ca-derived temperatures measured in parallel on surface and subsurface dwelling foraminifera, both used in the analyses of Ho and Laepple, Nature Geoscience 2016. As the signal-to-noise ratios of proxy-derived Holocene temperatures are relatively low, we selected records that contain at least the last deglaciation (oldest sample >18kyr BP).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Usnea species of the Neuropogon group are amongst the most widespread and abundant macrolichens in Antarctic regions. Four principal species, U. antarctica, U. aurantiaco-atra, U. sphacelata and U. subantarctica, have been described on morphological grounds. However, identification to species level is often difficult and atypical morphologies frequently arise. Over 400 specimens were collected on the Antarctic Peninsula and Falkland Islands. Both morphological and molecular characters (ITS and RPB1) were used to compare samples to clarify taxonomic relationships. Morphological characteristics used included presence of apothecia, apothecial rays, soredia, papillae, fibrils, pigmentation and the diameter of the central axis as a proportion of branch diameter. Results revealed a very close relationship between U. antarctica and U. aurantiaco-atra, suggesting that they might constitute a species pair or be conspecific. Usnea sphacelata was comprised of at least two genetically distinct groups with no clear differences in morphology. One group included the first reported fertile specimen of this species. Usnea subantarctica was phylogenetically distinct from the other main Antarctic Usnea species, but clustered with U. trachycarpa. Genetic variation was evident within all species although there was no clear correlation between geographic origin and genetic relatedness. Phylogenetic analyses indicated that species circumscription in the Neuropogon group needs revision, with the principal species being non-monophyletic. None of the morphological characters, or groups of characters, used in this study proved to be completely unambiguous markers for a single species. However, axis thickness was supported as being informative for the identification of monophyletic lineages within the group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding past changes in sea surface temperatures (SSTs) is crucial; however, existing proxies for reconstructing past SSTs are hindered by unknown ancient seawater composition (foraminiferal Mg/Ca and d18O), or reflect subsurface temperatures (TEX86) or have a limited applicable temperature range (Uk'37). We examine clumped isotope (D47) thermometry to fossil coccolith-rich material as an SST proxy, as clumped isotopes are independent of original seawater composition and applicable to a wide temperature range and coccolithophores are widespread and dissolution resistant. The D47-derived temperatures from <63, <20, <10 and 2-5 µm size fractions of two equatorial Pacific late Miocene-early Pliocene sediment samples (c1; c2) range between ~18-29 {degree sign}C, with c1 temperatures consistently above c2. Removing the >63 µm fraction removes most non-mixed layer components; however, the D47-derived temperatures display an unexpected slight decreasing trend with decreasing size fraction. This unexpected trend could partly arise because larger coccoliths (5-12 µm) are removed during the size fraction separation process. The c1 and <63 µm c2 D47-derived temperatures are comparable to concurrent Uk'37 SSTs. The <20, <10 and 2-5 µm c2 D47-derived temperatures are consistently cooler than expected. The D47-Uk'37 temperature offset is probably caused by abiotic/diagenetic calcite present in the c2 2-5 µm fraction (~53% by area), which potentially precipitated at bottom water temperatures of ~6 {degree sign}C . Our results indicate that clumped isotopes on coccolith-rich sediment fractions have potential as an SST proxy, particularly in tropical regions, providing that careful investigation of the appropriate size fraction for the region and timescale is undertaken.