77 resultados para Java (Indonésie) -- Descriptions et voyages

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interstitial waters and sediments from DSDP sites 288 and 289 contain information on the chemistry and diagenesis of carbonate in deep-sea sediments and on the role of volcanic matter alteration processes. Sr/Ca ratios are species dependent in unaltered foraminifera from site 289 and atom ratios (0.0012-0.0016) exceed those predicted by distribution coefficent data (~0.0004). During diagenesis Sr/Ca ratios of carbonates decrease and reach the theoretical distribution at a depth which is identical to the depth of Sr isotopic equilibration, where 87Sr/86Sr ratios of interstitial waters and carbonates converge. Mg/Ca ratios in the carbonates do not increase with depth as found in some other DSDP sites, possibly because of diagenetic re-equilibration with interstitial waters showing decreasing Mg(2+)/Ca(2+) ratios with depth due to Ca input and Mg removal by alteration of volcanic matter. Interstitial 18O/16O ratios increase with depth at site 289 to d18O = 0.67? (SMOW), reflecting carbonate recrystallization at elevated temperatures (>/= 20°C), the first recorded evidence of this effect in interstitial waters. Interstitial Sr2+ concentrations reach high levels, up to 1 mM, chiefly because of carbonate recrystallization. However, 87Sr/86Sr ratios decrease from 0.7092 to less than 0.7078, lower than for contemporaneous sea water, showing that there is a volcanic input of strontium at depth. This volcanic component is recorded in the Sr isotopic composition of recrystallized calcites. Isotopic compositions of the unrecrystallized calcites suggests that the rate of increase of the 87Sr/86Sr ratio of sea water with time has been faster since 3 my ago than in the preceding 13 my.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcite in the cavities and veins of igneous rocks has long been recognized as an alteration by-product (Dana, 1892). Elementary mineralogy textbooks report that the most common occurrence of aragonite is in the cavities of basalts and andesites (e.g., Kerr, 1977). Therefore, it is not surprising to find both carbonate minerals in association with the moderately to extensively altered basalt flows recovered during deep sea drilling on Suiko Seamount in the Emperor Seamount chain (DSDP Leg 55, Hole 433C). The thickness and vesicularity of the flows, along with the presence of oxidized flow tops, indicate that the basalt erupted subaerially (Site 433 Report, 1980). The stable isotopic contents of the carbonate phases filling and lining the veins and vesicles denote the environment of alteration. An isotopic study was undertaken to secure supportive evidence for a subaerial period in the development of the seamount. Also, the subsequent alteration history after submergence may be interpreted from this isotopic record.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediments from immediately above basalt basement and from between sections of basalt recovered from Deep Sea Drilling Project Legs 5 and 63 were analyzed by atomic absorption spectroscopy for Mg, Al, Si, Ca, Mn, Fe, Co, Ni, Cu, Zn, and Ba. All of these sediments showed enrichment in Fe and Mn over values typical of detritus supplied to the northeastern Pacific Ocean. X-ray diffractometry and differential chemical leaching indicate that up to 50% of the sediment, by weight, is in amorphous phases and that these phases are rich in Mn, Co, Cu, Ni, and Zn. Multivariate statistical analysis and normative partitioning of the chemical data indicate that much of the excess Fe and other transition elements in the sediment originate from hydrothermal sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic geochemical investigations were performed on sediments of Leg 130 to reconstruct the depositional environment of the Ontong Java Plateau. The Miocene to Quaternary sediments collected during the drilling campaign are characterized by extremely low organic carbon contents. As indicated by C/N ratios and Rock-Eval data, most of the organic matter is probably of marine origin. Based on mass-accumulation rates of organic carbon, the paleoproductivity for the Miocene-Pliocene and the late Pliocene-Pleistocene time intervals as well as the modern surface-water production were estimated. The productivity values of the surface sediments (25-59 gC/m2/yr) reflect the various influences of the equatorial upwelling cell on the different sites. The accumulation rates of organic carbon are generally low; however, they show a distinct increase at 8 Ma and a decrease at 2 Ma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxygen isotope records of G. sacculifer and Pulleniatina in the uppermost three cores at Ocean Drilling Program Hole 805C span the last 1.6 m.y., an estimate based on Fourier stratigraphy. The last 700,000 yr are dominated by both eccentricity and obliquity-related orbital fluctuations. The range of variation of delta18O values is about 1.5?, of which ca. 75% may be assigned to global ice-volume effect. The remainder of the range is shared by the effects of surface temperature variation, thermocline depth change (in the case of Pulleniatina, especially), and differential dissolution. Before 1 Ma, obliquity-related fluctuations dominate. The transition between obliquity- and eccentricity-dominated time occurs between ca. 1 and 0.7 Ma. It is marked by irregularities in phase relationships, the source of which is not clear. The age of the Brunhes/Matuyama boundary is determined as 794,000 yr by obliquity counting. However, an age of 830,000 yr also is compatible with the counts of both eccentricity and obliquity cycles. In the first case, Stage 19 (which contains the boundary) is coincident with the crest of the 19th obliquity cycle, setting the first crest downcore equal to zero, and counting backward (o19). In the second, Stage 19 coincides with o20. No evidence was found for fluctuations related to precession (23 and 19 k.y.) rising above the noise level, using plain Fourier expansion on the age model of the entire series. Detailed stratigraphic comparison with the Quaternary record of Hole 806B allows the recognition of major dissolution events (which increase the difference in delta18O values of G. sacculifer at the two sites). These occur at Stages 11-13, 16-17, and near 1.5 Ma (below o33).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oceanographic changes in the western equatorial Pacific during the past 6 Ma are inferred from oxygen isotopic analyses of planktic and benthic foraminifera from Ontong Java Plateau (DSDP Site 586). The taxa are Globigerinoides sacculifer, Pulleniatina, Cibicidoides wuellerstorfi, and Oridorsalis umbonatus. Cooling and ice buildup are indicated by an 18O enrichment of 0.3 per mil in the planktic species near 3.4 Ma. This shift apparently is compensated in the benthic data by a warming of the deep waters by between 1° and 2° C. We suggest that the dominant source of upper deep water supply to the Pacific changed from Antarctic to North Atlantic at that time, the North Atlantic-derived water being warmer. Near 2.8 Ma (approximately) the planktic foraminifera again record an enrichment in 18O (Delta delta18O=0.25 per mil). We suggest ice buildup in the northern hemisphere as the cause, because of subsequent sharp increase in fluctuations of the delta18O signal, that is, instability. The enrichment is magnified in the benthic foraminifera (Delta delta18O = 0.5 per mil) by a cooling of the deep water by 1.5° at the time, presumably signalling a glacial-type reduction of North Atlantic Deep Water (NADW) production. Episodic divergence between the signals of G. sacculifer and Pulleniatina in the Pleistocene apparently reflects periods of increased upwelling in the western equatorial Pacific. The amplitude of ice volume fluctuations cannot be reconstructed from delta18O data alone, unless there are constraints on temperature variations. The increase in amplitude of fluctuation of the benthic and planktic signals during the Pleistocene may be attributed either to an increase in maximum ice volume, or to an increase in the fractionation of continental ice, or a combination of both causes.