5 resultados para Iterated function system
em Publishing Network for Geoscientific
Resumo:
Studies on the consequences of ocean acidification for the marine ecosystem have revealed behavioural changes in coral reef fishes exposed to sustained near-future CO2 levels. The changes have been linked to altered function of GABAergic neurotransmitter systems, because the behavioural alterations can be reversed rapidly by treatment with the GABAA receptor antagonist gabazine. Characterization of the molecular mechanisms involved would be greatly aided if these can be examined in a well-characterized model organism with a sequenced genome. It was recently shown that CO2-induced behavioural alterations are not confined to tropical species, but also affect the three-spined stickleback, although an involvement of the GABAA receptor was not examined. Here, we show that loss of lateralization in the stickleback can be restored rapidly and completely by gabazine treatment. This points towards a worrying universality of disturbed GABAA function after high-CO2 exposure in fishes from tropical to temperate marine habitats. Importantly, the stickleback is a model species with a sequenced and annotated genome, which greatly facilitates future studies on underlying molecular mechanisms.
Resumo:
Respiration rates of 16 calanoid copepod species from the northern Benguela upwelling system were measured on board RRS Discovery in September/October 2010 to determine their energy requirements and assess their significance in the carbon cycle. Individual respiration rates were standardised to a mean copepod body mass and a temperature regime typical of the northern Benguela Current. These adjusted respiration rates revealed two different activity levels (active and resting) in copepodids C5 of Calanoides carinatus and females of Rhincalanus nasutus, which reduced their metabolism during dormancy by 82% and 62%, respectively. An allometric function (Imax) and an energy budget approach were performed to calculate ingestion rates. Imax generally overestimated the ingestion rates derived from the energy budget approach by >75%. We suggest that the energy budget approach is the more reliable approximation with a total calanoid copepod (mainly females) consumption of 78 mg C m-2 d-1 in neritic regions and 21 mg C m-2 d-1 in oceanic regions. The two primarily herbivorous copepods C. carinatus (neritic) and Nannocalanus minor (oceanic) contributed 83% and 5%, respectively, to total consumption by calanoid copepods. Locally, C. carinatus can remove up to 90% of the diatom biomass daily. In contrast, the maximum daily removal of dinoflagellate biomass by N. minor was 9%. These estimates imply that C. carinatus is an important primary consumers in the neritic province of the northern Benguela system, while N. minor has little grazing impact on phytoplankton populations further offshore. Data on energy requirements and total consumption rates of dominant calanoid copepods of this study are essential for the development of realistic carbon budgets and food-web models for the northern Benguela upwelling system.
Resumo:
A mesocosm experiment was conducted to quantify the relationships between the presence and body size of two burrowing heart urchins (Brissopsis lyrifera and Echinocardium cordatum) and rates of sediment nutrient flux. Furthermore, the impact of seawater acidification on these relationships was determined during this 40-day exposure experiment. Using carbon dioxide (CO2) gas, seawater was acidified to pHNBS 7.6, 7.2 or 6.8. Control treatments were maintained in natural seawater (pH = 8.0). Under normocapnic conditions, burrowing urchins were seen to reduce the sediment uptake of nitrite or nitrate whilst enhancing the release of silicate and phosphate. In acidified (hypercapnic) treatments, the biological control of biogeochemical cycles by urchins was significantly affected, probably through the combined impacts of high CO2 on nitrifying bacteria, benthic algae and urchin behaviour. This study highlights the importance of considering biological interactions when predicting the consequences of seawater acidification on ecosystem function.