92 resultados para Ionization of gases.
em Publishing Network for Geoscientific
Resumo:
Basalts from different structural provinces in the ocean basins, such as mid-ocean ridges, island arcs, and oceanic plateaus, show marked differences in major and minor element composition stemming from differences in magma source. In addition, there are variations even within individual provinces, based on such processes as crystal fractionation, secondary alteration, and hydrothermal alteration. It is also known that hydrothermal processes can cause changes in the gas composition of submarine basalts. For example, Zolotarev et al. (1978) have established that hydrothermal alteration frequently causes an increase in the CO2 content of basalts. If the homogeneity in composition and concentration of organic gases in oceanic basalts is associated with degassing during epimagmatic alteration, it would be interesting to investigate the relative abundance of gas phases in young basalts from midoceanic ridges. This chapter deals with the distribution of organic gases and CO2 in young basalts recovered on Leg 65 from the Gulf of California. Our aim was to establish the relationship between gas composition and degree of alteration.
Resumo:
The recognition of finely disseminated gas hydrate in deep marine sediments heavily depends on various indirect techniques because this mineral quickly decomposes upon recovery from in situ pressure and temperature conditions. Here, we discuss molecular properties of closely spaced gas voids (formed as a result of core recovery) and gas hydrates from an area of relatively low gas flux at the flanks of the southern Hydrate Ridge offshore Oregon (ODP Sites 1244, 1245 and 1247). Within the gas hydrate occurrence zone (GHOZ), the concentration of ethane (C2) and propane (C3) in adjacent gas voids shows large variability. Sampled gas hydrates are enriched in C2 relative to void gases but do not contain C3. We suggest that the observed variations in the composition of void gases is a result of molecular fractionation during crystallization of structure I gas hydrate that contains C2 but excludes C3 from its crystal lattice. This hypothesis is used to identify discrete intervals of finely disseminated gas hydrate in cored sediments. Variations in gas composition help better constrain gas hydrate distribution near the top of the GHOZ along with variations in pore water chemistry and core temperature. Sediments near the base of the gas hydrate stability zone are relatively enriched in C2+ hydrocarbon gases. Complex and poorly understood geological and geochemical processes in these deeper sediments make the identification of gas hydrate based on molecular properties of void gases more ambiguous. The proposed technique appears to be a useful tool to better understand the distribution of gas hydrate in marine sediments and ultimately the role of gas hydrate in the global carbon cycle.
Resumo:
A pressure core barrel (PCB), developed by the Deep Sea Drilling Project, was used successfully to recover, at in situ pressure, sediments of the Blake Outer Ridge, offshore the southeastern United States. The PCB is a unique, wire-line tool, 10.4 m long, capable of recovering 5.8 m of core (5.8 cm in diameter), maintained at or below in situ pressures of 34.4 million Pascals (MPa), and 1.8 m of unpressurized core (5.8 cm in diameter). All excess internal pressure above the operating pressure of 34.4 MPa is automatically vented off as the barrel is retrieved. The PCB was deployed five times at DSDP Site 533 where geophysical evidence suggests the presence of gas hydrates in the upper 600 m of sediment. Three cores were obtained holding average in situ pressures of 30 MPa. Two other cores did not maintain in situ pressures. Three of the five cores were intermittently degassed at varying intervals of time, and portions of the vented gas were collected for analysis. Pressure decline followed paths indicative of gas hydrates and/or dissolved gas. The released gas was dominantly methane (usually greater than 90%), along with higher molecular-weight hydrocarbon gases and carbon dioxide. During degassing the ratio of methane to ethane did not vary significantly. On the other hand, concentrations of higher molecular-weight hydrocarbon gases increased, as did carbon dioxide concentrations. The results from the PCB experiments provide tentative but equivocal evidence for the presence of .gas hydrates at Site 533. The amount of gas hydrate indicated is small. Nevertheless, this work represents the first successful study of marine gas hydrates utilizing the PCB.
Resumo:
Helium isotope composition as an indicator of the mantle-derived component was studied in gases from mineral springs, stratal waters, and mud volcanoes developed west of the Teberda River valley (10 objects) and two springs in the central segment of the Greater Caucasus orogen between the active El'brus and Kazbek volcanoes. In the western segment of the orogen ratios of 3He/4He = R_corr vary from 46x10**-8 to 114x10**-8 (from 0.33 to 0.81 R_atm, where R_atm = 1.4x10**-6 is the atmospheric ratio). They are substantially lower relative to ratios in the vicinity of El'brus and Kazbek and close to those in samples from the central segment (from 70x10**-8 to 134x10**-8 (from 0.50 to 0.96 R_atm), as well as to ratios previously recorded in the Caucasian Mineral Waters (CMW) area. Moreover, concentration of 3He in them is notably higher than its crustal radiogenic level characteristic of mud volcanoes in the Taman Peninsula, where 3He/4He varies from 1.4x10**-8 to 2.8x10**-8 (from 0.01 to 0.02 R_atm). Nitrogen-methane gas from northern piedmonts of the western Caucasus also contains nonatmogenic components including radiogenic 40Ar (40Ar/36Ar = 900), excessive nitrogen (~87% of total N2 concentration in sample) and mantle He. These data specify distribution of mantle derivates along the orogen strike and age of intrusive magmatic activity in its different segments.
Resumo:
Pleistocene- to middle Miocene-age sediment was drilled at Site 341 (67? 20.1'N, 6? 06.6'E) on the inner Voring Plateau during Leg 38 of the Deep Sea Drilling Project (DSDP). In 1985, the Ocean Drilling Program (ODP) returned to the inner Wring Plateau near Site 341 and drilled a new hole at Site 644 (66° 40.7'N, 4° 34.6'E) as part of a transect to study Norwegian Sea paleoenvironments. In Hole 341, gas expansion pockets formed in cores which were recovered from depths below 50 m. This gas was characterized as predominantly methane with delta13C values in the range of -87 to -77 per mil (Morris, 1976, doi:10.2973/dsdp.proc.38.124.1976). At Site 644, sediment gas and pore-water samples were obtained to study the geochemistry of methanogenesis. Of particular interest is the possibility that methane hydrate might be present in these sediments.