4 resultados para Ionic activity

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aerosol climatology at the coastal Antarctic Neumayer Station (NM) was investigated based on continuous, 25-yr long observations of biogenic sulphur components (methanesulfonate and non-sea salt sulphate), sea salt and nitrate. Although significant long-term trends could only be detected for nitrate (-3.6 ± 2.5% per year between 1983 and 1993 and +4.0 ± 3.2% per year from 1993-2007), non-harmonic periodicities between 2 and 5 yr were typical for all species. Dedicated time series analyses revealed that relations to sea ice extent and various circulation indices are weak at best or not significant. In particular, no consistent link between sea ice extent and sea salt loadings was evident suggesting only a rather local relevance of the NM sea salt record. Nevertheless, a higher Southern Annular Mode index tended to entail a lower biogenic sulphur signal. In examining the spatial uniformity of the NM findings we contrasted them to respective 17 yr records from the coastal Dumont d'Urville Station. We found similar long-term trends for nitrate, indicating an Antarctic-wide but not identifiable atmospheric signal, although any significant impact of solar activity or pollution could be ruled out. No inter-site variability on the multiannual scale was evident for the other ionic compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The constraints of an active life in a pelagic habitat led to numerous convergent morphological and physiological adaptations that enable cephalopod molluscs and teleost fishes to compete for similar resources. Here, we show for the first time that such convergent developments are also found in the ontogenetic progression of ion regulatory tissues; as in teleost fish, epidermal ionocytes scattered on skin and yolk sac of cephalopod embryos appear to be responsible for ionic and acid-base regulation before gill epithelia become functional. Ion and acid-base regulation is crucial in cephalopod embryos, as they are surrounded by a hypercapnic egg fluid with a Pco2 between 0.2 and 0.4 kPa. Epidermal ionocytes were characterized via immunohistochemistry, in situ hybridization, and vital dye-staining techniques. We found one group of cells that is recognized by concavalin A and MitoTracker, which also expresses Na+/H+ exchangers (NHE3) and Na+-K+-ATPase. Similar to findings obtained in teleosts, these NHE3-rich cells take up sodium in exchange for protons, illustrating the energetic superiority of NHE-based proton excretion in marine systems. In vivo electrophysiological techniques demonstrated that acid equivalents are secreted by the yolk and skin integument. Intriguingly, epidermal ionocytes of cephalopod embryos are ciliated as demonstrated by scanning electron microscopy, suggesting a dual function of epithelial cells in water convection and ion regulation. These findings add significant knowledge to our mechanistic understanding of hypercapnia tolerance in marine organisms, as it demonstrates that marine taxa, which were identified as powerful acid-base regulators during hypercapnic challenges, already exhibit strong acid-base regulatory abilities during embryogenesis.