4 resultados para Inverse-opal structure
em Publishing Network for Geoscientific
Resumo:
Geostrophic surface velocities can be derived from the gradients of the mean dynamic topography-the difference between the mean sea surface and the geoid. Therefore, independently observed mean dynamic topography data are valuable input parameters and constraints for ocean circulation models. For a successful fit to observational dynamic topography data, not only the mean dynamic topography on the particular ocean model grid is required, but also information about its inverse covariance matrix. The calculation of the mean dynamic topography from satellite-based gravity field models and altimetric sea surface height measurements, however, is not straightforward. For this purpose, we previously developed an integrated approach to combining these two different observation groups in a consistent way without using the common filter approaches (Becker et al. in J Geodyn 59(60):99-110, 2012, doi:10.1016/j.jog.2011.07.0069; Becker in Konsistente Kombination von Schwerefeld, Altimetrie und hydrographischen Daten zur Modellierung der dynamischen Ozeantopographie, 2012, http://nbn-resolving.de/nbn:de:hbz:5n-29199). Within this combination method, the full spectral range of the observations is considered. Further, it allows the direct determination of the normal equations (i.e., the inverse of the error covariance matrix) of the mean dynamic topography on arbitrary grids, which is one of the requirements for ocean data assimilation. In this paper, we report progress through selection and improved processing of altimetric data sets. We focus on the preprocessing steps of along-track altimetry data from Jason-1 and Envisat to obtain a mean sea surface profile. During this procedure, a rigorous variance propagation is accomplished, so that, for the first time, the full covariance matrix of the mean sea surface is available. The combination of the mean profile and a combined GRACE/GOCE gravity field model yields a mean dynamic topography model for the North Atlantic Ocean that is characterized by a defined set of assumptions. We show that including the geodetically derived mean dynamic topography with the full error structure in a 3D stationary inverse ocean model improves modeled oceanographic features over previous estimates.
Resumo:
Downward particle flux was measured using sediment traps at various depths over the Porcupine Abyssal Plain (water depth ab. 4850 m) for prolonged periods from 1989 to 1999. A strong seasonal pattern of flux was evident reaching a maximum in mid-summer. The composition of the material changed with depth, reflecting the processes of remineralisation and dissolution as the material sank through the water column. However, there was surprisingly little seasonal variation in its composition to reflect changes in the biology of the euphotic zone. Currents at the site have a strong tidal component with speeds almost always less than 15 cm/sec. In the deeper part of the water column they tend to be northerly in direction, when averaged over periods of several months. A model of upper ocean biogeochemistry forced by meteorology was run for the decade in order to provide an estimate of flux at 3000 m depth. Agreement with measured organic carbon flux is good, both in terms of the timings of the annual peaks and in the integrated annual flux. Interannual variations in the integrated flux are of similar magnitude for both the model output and sediment trap measurements, but there is no significant relationship between these two sets of estimates. No long-term trend in flux is evident, either from the model, or from the measurements. During two spring/summer periods, the marine snow concentration in the water column was assessed by time-lapse photography and showed a strong peak at the start of the downward pulse of material at 3000 m. This emphasises the importance of large particles during periods of maximum flux and at the start of flux peaks. Time lapse photographs of the seabed show a seasonal cycle of coverage of phytodetrital material, in agreement with the model output both in terms of timing and magnitude of coverage prior to 1996. However, after a change in the structure of the benthic community in 1996 no phytodetritus was evident on the seabed. The model output shows only a single peak in flux each year, whereas the measured data usually indicated a double peak. It is concluded that the observed double peak may be a reflection of lowered sediment trap efficiency when flux is very high and is dominated by large marine snow particles. Resuspension into the trap 100 m above the seabed, when compared to the primary flux at 3000 m depth (1800 mab) was lower during periods of high primary flux probably because of a reduction in the height of resuspension when the material is fresh. At 2 mab, the picture is more complex with resuspension being enhanced during the periods of higher flux in 1997, which is consistent with this hypothesis. However there was rather little relationship to flux at 3000 m in 1998. At 3000 m depth, the Flux Stability Index (FSI), which provides a measure of the constancy of the seasonal cycle of flux, exhibited an inverse relationship with flux, such that the highest flux of organic carbon was recorded during the year with the greatest seasonal variation.
Resumo:
High-resolution records of sedimentary proxies provide insights into fine-scale geochemical responses to climatic forcing. Gamma-ray attenuation (GRA) bulk-density data and magnetic stratigraphy records from Palmer Deep, Site 1098, show variability close to the same scale as ice cores, making this site ideal for high-resolution geochemical investigations. In conjunction with shipboard geophysical measurements, silica records allow high-resolution evaluation of the frequencies and amplitudes of biogenic variability. This provides investigators additional data sets to evaluate the global extent of climatic events that are presently defined by regional oceanic data sets (e.g., Younger Dryas in the North Atlantic) and to evaluate the potential mechanisms that link biological productivity and climate in the Southern Ocean. In addition, because of the observed links between diatom blooms and export productivity (Michaels and Silver, 1988, doi:10.1016/0198-0149(88)90126-4), biogenic silica may be an indicator of the efficiency of the biological pump (removal of organic carbon from the euphotic zone and burial within the sediments). Because the net removal of CO2 (on short time scales up to millennial, the balance between upwelled CO2, carbon fixation, and the removal of organic carbon from the surface ocean) can determine the atmospheric concentration; proxies that allow us to quantify export production yield insights into carbon cycle responses. In today's ocean, diatoms are integrally linked with new production (production based on the use of nitrate and molecular nitrogen rather than ammonium, which is generated by the microbial degradation of organic carbon) (Dugdale and Goering, 1967). Thus, as with nutrient utilization proxies, biogenic silica may be a good indicator of export production. The difficulties lie in translating the biogenic opal burial records to export production. Numerous factors control the preservation of sedimentary biogenic silica, including depth of the water column, water temperature, trace element chemistry, grazing pressure, bloom structure, and species composition of the diatom assemblage (Nelson et al., 1995, doi:10.1029/95GB01070). In addition, several recent investigations have noted additional complications. Iron limitation increases the uptake of Si relative to carbon (Hutchins et al., 1998, ; Takeda, 1998, doi:10.1038/31674). In the Southern Ocean, iron limitation could produce more robust, and thus better preserved, diatoms; thus, the burial record may be a record of iron limitation rather than of the export of organic carbon (Boyle, 1998). In addition, laboratory experiments show that bacteria accelerate the dissolution of biogenic silica (Bidle and Azam, 1999, doi:10.1038/17351). Both the species composition and temperature seem to influence the amount of dissolution. Evidence of recycling of silicic acid within the photic zone (Brzezinski et al., 1997) suggests that the silica pump (removal from the euphotic zone of silica relative to nitrogen and phosphorus) may work with variable efficiency. This becomes an issue when trying to reconstruct the removal of organic carbon from sedimentary biogenic silica records. In fact, there is a wide range in the Si:Corganic molar ratio in the Southern Ocean (0.18-0.81) (Nelson et al., 1995; Ragueneau et al., 2000, doi:10.1016/S0921-8181(00)00052-7). Thus, the presence (or absence) of biogenic silica alone may tell us little about the export productivity, complicating the interpretation of age-related trends. One recent assessment has added some hope to links between productivity and opal burial in the Southern Ocean (Pondaven et al., 2000). Quantitative comparison of different productivity proxies will greatly aid in this evaluation.