2 resultados para Inventory Management
em Publishing Network for Geoscientific
Resumo:
We present the first high-resolution (500 m × 500 m) gridded methane (CH4) emission inventory for Switzerland, which integrates the national emission totals reported to the United Nations Framework Convention on Climate Change (UNFCCC) and recent CH4 flux studies conducted by research groups across Switzerland. In addition to anthropogenic emissions, we also include natural and semi-natural CH4 fluxes, i.e., emissions from lakes and reservoirs, wetlands, wild animals as well as uptake by forest soils. National CH4 emissions were disaggregated using detailed geostatistical information on source locations and their spatial extent and process- or area-specific emission factors. In Switzerland, the highest CH4 emissions in 2011 originated from the agricultural sector (150 Gg CH4/yr), mainly produced by ruminants and manure management, followed by emissions from waste management (15 Gg CH4/yr) mainly from landfills and the energy sector (12 Gg CH4/yr), which was dominated by emissions from natural gas distribution. Compared to the anthropogenic sources, emissions from natural and semi-natural sources were relatively small (6 Gg CH4/yr), making up only 3 % of the total emissions in Switzerland. CH4 fluxes from agricultural soils were estimated to be not significantly different from zero (between -1.5 and 0 Gg CH4/yr), while forest soils are a CH4 sink (approx. -2.8 Gg CH4/yr), partially offsetting other natural emissions. Estimates of uncertainties are provided for the different sources, including an estimate of spatial disaggregation errors deduced from a comparison with a global (EDGAR v4.2) and a European CH4 inventory (TNO/MACC). This new spatially-explicit emission inventory for Switzerland will provide valuable input for regional scale atmospheric modeling and inverse source estimation.
Resumo:
During the SINOPS project, an optimal state of the art simulation of the marine silicon cycle is attempted employing a biogeochemical ocean general circulation model (BOGCM) through three particular time steps relevant for global (paleo-) climate. In order to tune the model optimally, results of the simulations are compared to a comprehensive data set of 'real' observations. SINOPS' scientific data management ensures that data structure becomes homogeneous throughout the project. Practical work routine comprises systematic progress from data acquisition, through preparation, processing, quality check and archiving, up to the presentation of data to the scientific community. Meta-information and analytical data are mapped by an n-dimensional catalogue in order to itemize the analytical value and to serve as an unambiguous identifier. In practice, data management is carried out by means of the online-accessible information system PANGAEA, which offers a tool set comprising a data warehouse, Graphical Information System (GIS), 2-D plot, cross-section plot, etc. and whose multidimensional data model promotes scientific data mining. Besides scientific and technical aspects, this alliance between scientific project team and data management crew serves to integrate the participants and allows them to gain mutual respect and appreciation.