126 resultados para Intrinsic dissolution
em Publishing Network for Geoscientific
Resumo:
Within the framework of the EU-funded BENGAL programme, the effects of seasonality on biogenic silica early diagenesis have been studied at the Porcupine Abyssal Plain (PAP), an abyssal locality located in the northeast Atlantic Ocean. Nine cruises were carried out between August 1996 and August 1998. Silicic acid (DSi) increased downward from 46.2 to 213 µM (mean of 27 profiles). Biogenic silica (BSi) decreased from ca. 2% near the sediment-water interface to <1% at depth. Benthic silicic acid fluxes as measured from benthic chambers were close to those estimated from non-linear DSi porewater gradients. Some 90% of the dissolution occurred within the top 5.5 cm of the sediment column, rather than at the sediment-water interface and the annual DSi efflux was close to 0.057 mol Si/m**2/yr. Biogenic silica accumulation was close to 0.008 mol Si/m**2/yr and the annual opal delivery reconstructed from sedimentary fluxes, assuming steady state, was 0.065 mol Si/m**2/yr. This is in good agreement with the mean annual opal flux determined from sediment trap samples, averaged over the last decade (0.062 mol Si/m**2/yr). Thus ca. 12% of the opal flux delivered to the seafloor get preserved in the sediments. A simple comparison between the sedimentation rate and the dissolution rate in the uppermost 5.5 cm of the sediment column suggests that there should be no accumulation of opal in PAP sediments. However, by combining the BENGAL high sampling frequency with our experimental results on BSi dissolution, we conclude that non-steady state processes associated with the seasonal deposition of fresh biogenic particles may well play a fundamental role in the preservation of BSi in these sediments. This comes about though the way seasonal variability affects the quality of the biogenic matter reaching the seafloor. Hence it influences the intrinsic dissolution properties of the opal at the seafloor and also the part played by non-local mixing events by ensuring the rapid transport of BSi particles deep into the sediment to where saturation is reached.
Resumo:
The large discrepancy between field and laboratory measurements of mineral reaction rates is a long-standing problem in earth sciences, often attributed to factors extrinsic to the mineral itself. Nevertheless, differences in reaction rate are also observed within laboratory measurements, raising the possibility of intrinsic variations as well. Critical insight is available from analysis of the relationship between the reaction rate and its distribution over the mineral surface. This analysis recognizes the fundamental variance of the rate. The resulting anisotropic rate distributions are completely obscured by the common practice of surface area normalization. In a simple experiment using a single crystal and its polycrystalline counterpart, we demonstrate the sensitivity of dissolution rate to grain size, results that undermine the use of "classical" rate constants. Comparison of selected published crystal surface step retreat velocities (Jordan and Rammensee, 1998) as well as large single crystal dissolution data (Busenberg and Plummer, 1986) provide further evidence of this fundamental variability. Our key finding highlights the unsubstantiated use of a single-valued "mean" rate or rate constant as a function of environmental conditions. Reactivity predictions and long-term reservoir stability calculations based on laboratory measurements are thus not directly applicable to natural settings without a probabilistic approach. Such a probabilistic approach must incorporate both the variation of surface energy as a general range (intrinsic variation) as well as constraints to this variation owing to the heterogeneity of complex material (e.g., density of domain borders). We suggest the introduction of surface energy spectra (or the resulting rate spectra) containing information about the probability of existing rate ranges and the critical modes of surface energy.
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-9/16-1
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-9/9-15
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-9/14-5
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-9/18-9
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-7/1-10
Resumo:
Using peridotite drilled during Ocean Drilling Program Leg 209, a series of enrichment cultures were initiated on board the ship to stimulate microbially enhanced dissolution of olivine. Dissolution was estimated by measured changes in dissolved Li and Si in the media through time (up to 709 days). The results suggest that there was no significant difference between the amounts of dissolved Li and Si in most of the inoculated microbial cultures compared to the control cultures. Alternative explanations for this are that 1. No microbes are living in the culture tubes that can affect the dissolution rates of olivine, 2. The control cultures have microbes effecting the dissolution of olivine as well as the inoculated cultures, 3. Not enough time has passed to build up a large enough microbial population to effect the dissolution of the olivine in the culture tubes, 4. Microbes act to suppress dissolution of olivine instead of enhancing dissolution, and 5. Abiotic dissolution overshadows microbially enhanced dissolution. Further work is required to test these alternatives.
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-7/12-1