20 resultados para Intermedia circulation

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benthic foraminiferal assemblages are a widespread tool to understand changes in organic matter flux and bottom-water oxygenation and their relation to paleoceanographic changes in the Upper Cretaceous oceans. In this study, assemblage data (diversity, total number, and number per species and gram) from Deep Sea Drilling Project (DSDP) Site 390 (Blake Nose, western North Atlantic) were processed for the lower Maastrichtian (Globotruncana falsostuarti - Gansserina gansseri Planktic Foraminiferal Zone). These data document significant changes in nutrient flux to the sea floor as well as bottom-water oxygenation during this time interval. Parallel to the observed changes in the benthic foraminiferal assemblages the number of inoceramid shells decreases, reflecting also a significant increase in bottom-water oxygenation. We speculate, that these data could reflect the onset of a shift from warmer low-latitude to cooler high-latitude deep-water sources. This speculation will predate the major reorganization of the oceanic circulation resulting in a circulation mode similar to today at the Early/Late Maastrichtian boundary by ~1 Ma and therefore improves our understanding of Late Cretaceous paleoceanography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amounts of aerosols transported to the shelf surface were calculated on the basis of in situ measurements of concentrations of eolian matter (insoluble aerosol fraction) and vertical fluxes of settling dust in five areas of the Black Sea shelf from the Danube delta to the Inguri River mouth. More than 8.3 mln t of eolian matter are annually transported from the land over the shelf of the former USSR. At the same time more than 5.4 mln t are supplied to the northwestern shelf area, 1.7 mln t are supplied to the Crimean area, about 0.8 mln t are supplied to the Kerch-Taman' area, and about 0.45 mln t are supplied to the Caucasian area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Present-day low-latitude eastern and western Atlantic basins are geochemically distinct below the sill depth of the Mid-Atlantic Ridge. While Antarctic Bottom Water (AABW) circulates freely in the western Atlantic, flow into the eastern Atlantic is restricted below 4 km which results in filling the abyssal depths of this basin with water of geochemical similarity to nutrient depleted North Atlantic Deep Water. Using carbon isotopes and Cd/Ca ratios in benthic foraminifera we reconstruct the geochemistry of these basins during the last glacial maximum. Results indicate that deep eastern and western Atlantic basins became geochemically identical during the last glacial. This was achieved by shoaling of the upper surface of AABW above the sill depth of the Mid-Atlantic Ridge, which allowed bottom waters in both basins to be filled with the same water mass. Although AABW became the dominant water mass in the deep eastern Atlantic basin during the glacial, Holocene-glacial delta13C-PO4 shifts in this basin are in Redfield proportions, unlike the disproportionate Holocene-glacial delta13C-PO4 shifts observed in the Southern Ocean. By examining the composition of deep and intermediate waters throughout the Atlantic, we show that this effect was induced by a change in gradient of the delta13C-PO4 deepwater mixing line during glacial times. Evidence from high-latitude planktonic data suggests that the change in gradient of the deepwater mixing line was brought about through a significant reduction in the thermodynamic effect on Southern Ocean surface waters. By using coupled delta13C-PO4 data to constrain the composition of end member water masses in the glacial Atlantic, we conclude that deep waters in the low-latitude glacial Atlantic were composed of a mixture of northern and southern source waters in a ratio of 1:3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lengthy warm, stable climate of the Cretaceous terminated in the Campanian with a cooling trend, interrupted in the early and latest Maastrichtian by two events of global warming, at ~70-68 Ma and at 65.78-65.57 Ma. These climatic oscillations had a profound effect on pelagic ecosystems, especially on planktic foraminiferal populations. Here we compare biotic responses in the tropical-subtropical (Tethyan) open ocean and mesotrophic (Zin Valley, Israel) and oligotrophic (Tunisia) slopes, which correlate directly with global warming and cooling. The two warming events coincide with blooms of Guembelitria, an extreme opportunist genus best known as the main survivor of the Cretaceous-Paleogene (K-Pg) catastrophe. In the Maastrichtian, Guembelitria bloomed in the uppermost surface water above shelf and slope environments but failed to reach the open ocean as it did at K-Pg. The coldest interval of the late Maastrichtian (~68-65.78 Ma) is marked by an acme of the otherwise rare species Gansserina gansseri, a deep-dwelling keeled globotruncanid. The G. gansseri acme event can be traced from the deep ocean even onto the Tethyan slope, marking copious production and circulation of cold intermediate water. This acme is abruptly terminated by extinction of the species, a dramatic reversal attributed to a short-term global warming episode. This extinction corresponds precisely with the second bloom of Guembelitria that began ~300 kyr prior to the K-Pg event. The antithetical relationship between blooming of Guembelitria and the G. gansseri acme reflects planktic foraminiferal sensitivity to warm-cool-warm-cool climatic oscillations marking the end of the Cretaceous.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carbonate cements found in Sites 717-719 of ODP Leg 116 correspond to the precipitation of inorganic calcite due to circulation of hot fluid associated with intraplate deformation in the central Indian Ocean. A first burst of hydrothermal activity may have occurred 7.5-9 Ma and a second burst less than 0.5 Ma. These fluids were probably derived from the basaltic basement and the immediately overlying sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The North Atlantic at present is ventilated by overflow of the Denmark Strait, Iceland-Faeroe Ridge, Faeroe Bank Channel, and Wyville-Thompson Ridge. The evolution of Cenozoic abyssal circulation of this region was related to tectonic opening and subsidence of these sills. We used d13C records of the benthic foraminifer Cibicidoides to decipher the timing of tectonically controlled changes in bottom-water circulation in the eastern basins (Biscay and Iberian) of the northern North Atlantic. Records from Site 608 (Kings Trough, northeastern North Atlantic) show that from about 24 to 15 Ma (early to early middle Miocene), d13C values in the Kings Trough area were depleted relative to western North Atlantic values and were more similar to Pacific d13C values. This reflects less ventilation of the Kings Trough region as compared to the well-oxygenated western North Atlantic. Comparison of Oligocene d13C records from Site 119 (Bay of Biscay) with western North Atlantic records suggests that the eastern basin was also relatively isolated prior to 24 Ma. At about 15 Ma, d13C values at Site 608 attained values similar to the western North Atlantic, indicating increased eastern basin ventilation in the middle Miocene. This increased advection into the eastern basin predated a major d18O increase which occurred at about 14.6 Ma. Subsidence estimates of the Greenland-Scotland Ridge indicate that the deepening of the Iceland-Faeroe Ridge was coincident with the marked change in eastern basin deep-water ventilation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the mid-Cretaceous period, the global subsurface oceans were relatively warm, but the origins of the high temperatures are debated. One hypothesis suggests that high sea levels and the continental configuration allowed high-salinity waters in low-latitude epicontinental shelf seas to sink and form deep-water masses (Brass et al., 1982, doi:10.1038/296620a0; Arthur and Natland, 1979; Chamberlin, 1906). In another scenario, surface waters in high-latitude regions, the modern area of deep-water formation, were warmed through greenhouse forcing (Bice and Marotzke, 2001, doi:10.1029/2000JC000561), which then propagated through deep-water circulation. Here, we use oxygen isotopes and Mg/Ca ratios from benthic foraminifera to reconstruct intermediate-water conditions in the tropical proto-Atlantic Ocean from 97 to 92 Myr ago. According to our reconstruction, intermediate-water temperatures ranged between 20 and 25 °C, the warmest ever documented for depths of 500-1,000 m. Our record also reveals intervals of high-salinity conditions, which we suggest reflect an influx of saline water derived from epicontinental seas around the tropical proto-North Atlantic Ocean. Although derived from only one site, our data indicate the existence of warm, saline intermediate waters in this silled basin. This combination of warm saline intermediate waters and restricted palaeogeography probably acted as preconditioning factors for the prolonged period of anoxia and black-shale formation in the equatorial proto-North Atlantic Ocean during the Cretaceous period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maestrichtian to Holocene calcareous nannofossils from two closely spaced sites on the upper continental rise some 100 miles (161 km) southeast of Atlantic City, New Jersey, were zoned in order to help date a major canyon-cutting event in the late Miocene and to delineate and correlate other hiatuses with seismic stratigraphy. Mid-middle Eocene through middle Miocene sediments (Zones CP14 to CN6) were not recovered in these holes, but nearly all other zones are accounted for. The Eocene section is described in a companion chapter (Applegate and Wise, 1987, doi:10.2973/dsdp.proc.93.118.1987). Nannofossils are generally sparse and moderately preserved in the clastic sediments of Site 604. Sedimentation rates are extremely high for the upper Pleistocene (201 m/m.y. minimum) above a hiatus calculated to span 0.44 to 1.1 Ma. The associated disconformity is correlated with local seismic reflection Horizon Pr . Sedimentation rates continue to be high (93 m/m.y.) down to a second hiatus in the upper Pliocene dated from about 2.4 to 2.9 (or possibly 3.3) Ma. The disconformity associated with this hiatus is correlated with local seismic reflection Horizon P2 and regional Reflector Blue, which can be interpreted to mark either the onset of Northern Hemisphere continental glaciation or circulation changes associated with the closure of the Central American Seaway. Sedimentation rates in the pre-glacial lower Pliocene are only about a third those in the glacial upper Pliocene. A prominent disconformity in the upper Miocene marks a major lithologic boundary that separates Messinian(?) glauconitic claystones above from lower Tortonian conglomeratic debris flows and turbidites below. The debris flows recovered are assigned to nannofossil Zones CN8a and CN7, but drilling difficulties prevented penetration of the bottom of this sequence some 100 m below the terminal depth of the hole. Correlation of the lower bounding seismic reflector (M2/Merlin?) to a drift sequence drilled on the lower rise at DSDP Site 603, however, predicts that the debris flows began close to the beginning of the late Miocene (upper Zone CN6 time) at about 10.5 Ma. The debris flows represent a major canyon-cutting event that we correlate with the beginning of the particularly severe late Miocene glaciations believed to be associated with the formation of the West Antarctic Ice Sheet. The existence of these spectacular debris flows strongly suggest that the late Miocene glacio-eustatic low stand occurred during Vail Cycle TM3.1 (lower Tortonian) rather than during Vail Cycle TM3.2 (Messinian) as originally published. Beneath a set of coalesced regional disconformities centered upon seismic reflection Horizon Au, coccoliths are abundant and in general are moderately preserved at Site 605 in a 619-m carbonate section extending from the middle Eocene Zone CP13b to the upper Maestrichtian Lithraphidites quadratus Zone. Sedimentation rates are 37 m/m.y. in the Eocene down to a condensed interval near the base (Zone CP9). A disconformity is suspected near the Eocene/Paleocene boundary. Sedimentation rates for the upper Paleocene Zone CP8 are similar to those of the Eocene, but Zones CP7 and CP6 lie within another condensed interval. The highest Paleocene rates are 67 m/m.y. down through Zones CP5 and CP4 to a major disconformity that separates the upper Paleocene from the Danian. This hiatus spans about 2.6 m.y. (upper Zone CP3 to lower Zone CP2) and corresponds to the major sea-level drop at the base of Vail Cycle TE2.1. As the most prominent break in this Paleogene section, it may correspond to seismic reflection Horizon A* of the North American Basin. Sedimentation rates from this point to the Cretaceous/Tertiary boundary drop to 11 m/m.y., still high for a Paleocene DSDP section. No major break in deposition could be detected at the Cretaceous/Tertiary boundary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies combining sedimentological and biological evidence to reconstruct Holocene climate beyond the major changes, and especially seasonality, are rare in Europe, and are nearly completely absent in Germany. The present study tries to reconstruct changes of seasonality from evidence of annual algal successions within the framework of well-established pollen zonation and 14C-AMS dates from terrestrial plants. Laminated Holocene sediments in Lake Jues (10°20.70' E, 51°39.30' N, 241 m a.s.l.), located at the SW margin of the Harz Mountains, central Germany, were studied for sediment characteristics, pollen, diatoms and coccal green algae. An age model is based on 21 calibrated AMS radiocarbon dates from terrestrial plants. The sedimentary record covers the entire Holocene period. Trophic status and circulation/stagnation patterns of the lake were inferred from algal assemblages, the subannual structure of varves and the physico-chemical properties of the sediment. During the Holocene, mixing conditions alternated between di-, oligo- and meromictic depending on length and variability of spring and fall periods, and the stability of winter and summer weather. The trophic state was controlled by nutrient input, circulation patterns and the temperature-dependent rates of organic production and mineralization. Climate shifts, mainly in phase with those recorded from other European regions, are inferred from changing limnological conditions and terrestrial vegetation. Significant changes occurred at 11,600 cal. yr. BP (Preboreal warming), between 10,600 and 10,100 cal. yr. BP (Boreal cooling), and between 8,400 and 4,550 cal. yr. BP (warm and dry interval of the Atlantic). Since 4,550 cal. yr. BP the climate became gradually cooler, wetter and more oceanic. This trend was interrupted by warmer and dryer phases between 3,440 and 2,850 cal. yr. BP and, likely, between 2,500 and 2,250 cal. yr. BP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fifteen Iberian margin sediment cores, distributed between 43°12'N and 35°53'N, have been used to reconstruct spatial and temporal (sub)surface circulation along the Iberian margin since the Last Glacial period. Time-slice maps of planktonic foraminiferal derived summer sea surface temperature (SST) and export productivity (Pexp) were established for specific time intervals within the last 35 ky: the Holocene (Recent and last 8 ky), Younger Dryas (YD), Heinrich Stadials (HS) 1, 2a, 2b, 3, and the Last Glacial Maximum (LGM). The SST during the Holocene shows the same latitudinal gradient along the western Iberian margin as present-day with cold but productive areas that reflect the influence of coastal upwelling centers. The LGM appears as a slightly less warm, but more productive period relative to the Holocene and present-day conditions, suggesting that sea-level minima forced a westward displacement of the coastal upwelling centers possibly accompanied by a strengthening of northward winds. During the YD, a longitudinal thermal front is depicted at 10°W, with cold polar waters offshore and warmer subtropical waters inshore, suggesting that the subtropical Paleo-Iberian Poleward Current more likely flowed at a more inshore location masking the local SST signal and amplitude of variation. A substantial cooling and drop in productivity is observed during all HS, in particular HS1 and HS3, reflecting the penetration of icebergs-derived meltwater. These most extreme southward extensions of very cold waters define a strong SST gradient that marks a possible Paleo-Azores Front. Higher production south of this front was likely fed by frontal nutrient advection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space competition between corals and seaweeds is an important ecological process underlying coral-reef dynamics. Processes promoting seaweed growth and survival, such as herbivore overfishing and eutrophication, can lead to local reef degradation. Here, we present the case that increasing concentrations of atmospheric CO2 may be an additional process driving a shift from corals to seaweeds on reefs. Coral (Acropora intermedia) mortality in contact with a common coral-reef seaweed (Lobophora papenfussii) increased two- to threefold between background CO2 (400 ppm) and highest level projected for late 21st century (1140 ppm). The strong interaction between CO2 and seaweeds on coral mortality was most likely attributable to a chemical competitive mechanism, as control corals with algal mimics showed no mortality. Our results suggest that coral (Acropora) reefs may become increasingly susceptible to seaweed proliferation under ocean acidification, and processes regulating algal abundance (e.g. herbivory) will play an increasingly important role in maintaining coral abundance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distribution patterns of the most important pollen types from southern European and northwest African source areas for the 18,000 years B.P. time slice are reconstructed from pollen records of 14 well-dated deep-sea cores located between 37° and 9°N and compared with the modern pollen distribution in this area. It is concluded that the belt with maximum African Easterly Jet transport did not shift latitudinally during the last glacial-interglacial transition but remained at about 20°N. Furthermore, it is substantiated that the trade winds did not shift latitudinally during the last glacial-interglacial transition. This evidence is not compatible with an atmospheric circulation model that assumes a zone of surface westerlies in the northern part of northwest Africa. Trade winds during glacial episodes did, however, intensify, especially from about 36° to 24° N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of dissolved aluminium in the West Atlantic Ocean shows a mirror image with that of dissolved silicic acid, hinting at intricate interactions between the ocean cycling of Al and Si. The marine biogeochemistry of Al is of interest because of its potential impact on diatom opal remineralisation, hence Si availability. Furthermore, the dissolved Al concentration at the surface ocean has been used as a tracer for dust input, dust being the most important source of the bio-essential trace element iron to the ocean. Previously, the dissolved concentration of Al was simulated reasonably well with only a dust source, and scavenging by adsorption on settling biogenic debris as the only removal process. Here we explore the impacts of (i) a sediment source of Al in the Northern Hemisphere (especially north of ~ 40° N), (ii) the imposed velocity field, and (iii) biological incorporation of Al on the modelled Al distribution in the ocean. The sediment source clearly improves the model results, and using a different velocity field shows the importance of advection on the simulated Al distribution. Biological incorporation appears to be a potentially important removal process. However, conclusive independent data to constrain the Al / Si incorporation ratio by growing diatoms are missing. Therefore, this study does not provide a definitive answer to the question of the relative importance of Al removal by incorporation compared to removal by adsorptive scavenging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benthic foraminiferal assemblages in Mesozoic and Cenozoic sediments were studied at Sites 511, 512, 513, and 514 drilled during Leg 71 in the southwestern Atlantic on the Maurice Ewing Bank and in the Argentine Basin. Benthic foraminifers in almost all stratigraphic subdivisions of Sites 511 and 512 reflect the gradual subsidence of the Falkland Plateau from shelf depths in the Barremian-Albian, when a semiclosed basin with restricted circulation of water masses and anaerobic conditions existed, to lower bathyal depths in the Late Cretaceous and Cenozoic, with an abrupt acceleration at the boundary of Lower and Upper Cretaceous. The composition, distribution, and preservation of Late Cretaceous assemblages of benthic foraminifers suggest considerable fluctuations of the foraminiferal lysocline and the CCD. This is evidenced by dissolution facies and foraminiferal assemblages in which agglutinated and resistant calcareous forms predominated during high stands of the CCD and by calcareous facies in which rich assemblages of calcareous species predominated during low stands. The highest position of the CCD on the Plateau (less than 1500-2000 m) was in the late Cenomanian, Turonian, and Coniacian. In the Santonian and Campanian the CCD was at depths below 1500-2000 meters. At the end of the Campanian the CCD shifted again to depths comparable with those of Cenomanian and Turonian time. In the latest Campanian and the Maestrichtian the CCD was low and nanno-foraminiferal oozes with a rich assemblage of benthic foraminifers accumulated. Foraminiferal assemblages at Sites 513 and 514 in the Argentine Basin also testify to oceanic subsidence from lower bathyal depths in the Oligocene to abyssal ones at present. This process was complicated by the influence of geographical migrations of the Polar Front caused by extensions of the ice sheet in the Antarctic after the opening of the Drake Passage during the Oligocene. In Mesozoic and Cenozoic deposits of the Falkland Plateau and the Argentine Basin seven assemblages of benthic foraminifers were distinguished by age: early-middle Albian, middle-late Albian, Late Cretaceous (including four groups), middle Eocene, late Eocene-early Miocene, middle-late Miocene, and Pliocene-Quaternary. The Albian assemblages contain many species common to the foraminiferal fauna of the Austral Biogeographical Province. The Late Cretaceous assemblage contains, along with Austral species, species common to foraminifers of North America, Western Europe, the Russian platform, and the south of the U.S.S.R. Deep-sea cosmopolitan species prevail in Cenozoic assemblages.