19 resultados para Intercropping epochs
em Publishing Network for Geoscientific
Resumo:
Several episodes of abrupt and transient warming, each lasting between 50,000 and 200,000 years, punctuated the long-term warming during the Late Palaeocene and Early Eocene (58 to 51 Myr ago) epochs**1,2. These hyperthermal events, such as the Eocene Thermal Maximum 2 (ETM2) that took place about 53.5 Myr ago**2, are associated with rapid increases in atmospheric CO2 content. However, the impacts of most events are documented only locally**3,4. Here we show, on the basis of estimates from the TEX86' proxy, that sea surface temperatures rose by 3-5 °C in the Arctic Ocean during the ETM2. Dinoflagellate fossils demonstrate a concomitant freshening and eutrophication of surface waters, which resulted in euxinia in the photic zone. The presence of palm pollen implies**5 that coldest month mean temperatures over the Arctic land masses were no less than 8 °C, in contradiction of model simulations that suggest hyperthermal winter temperatures were below freezing**6. In light of our reconstructed temperature and hydrologic trends, we conclude that the temperature and hydrographic responses to abruptly increased atmospheric CO2 concentrations were similar for the ETM2 and the better-described Palaeocene-Eocene Thermal Maximum**7,8, 55.5 Myr ago.
Eocene sedimentary calcium carbonate contents and stable isotope composition of benthic foraminifera
Resumo:
'Hyperthermals' are intervals of rapid, pronounced global warming known from six episodes within the Palaeocene and Eocene epochs (~65-34 million years (Myr) ago) (Zachos et al., 2005, doi:10.1126/science.1109004; 2008, doi:10.1038/nature06588; Roehl et al., 2007, doi:10.1029/2007GC001784; Thomas et al., 2000; Cramer et al., 2003, doi:10.1029/2003PA000909; Lourens et al., 2005, doi:10.1038/nature03814; Petrizzo, 2005, doi:10.2973/odp.proc.sr.198.102.2005; Sexton et al., 2006, doi:10.1029/2005PA001253; Westerhold et al., 2007, doi:10.1029/2006PA001322; Edgar et al., 2007, doi:10.1038/nature06053; Nicolo et al., 2007, doi:10.1130/G23648A.1; Quillévéré et al., 2008, doi:10.1016/j.epsl.2007.10.040; Stap et al., 2010, doi:10.1130/G30777.1). The most extreme hyperthermal was the 170 thousand year (kyr) interval (Roehl et al., 2007) of 5-7 °C global warming (Zachos et al., 2008) during the Palaeocene-Eocene Thermal Maximum (PETM, 56 Myr ago). The PETM is widely attributed to massive release of greenhouse gases from buried sedimentary carbon reservoirs (Zachos et al., 2005; 2008; Lourenbs et al., 2005; Nicolo et al., 2007; Dickens et al., 1995, doi:10.1029/95PA02087; Dickens, 2000; 2003, doi:10.1016/S0012-821X(03)00325-X; Panchuk et al., 2008, doi:10.1130/G24474A.1) and other, comparatively modest, hyperthermals have also been linked to the release of sedimentary carbon (Zachos et al., 2008, Lourens et al., 2005; Nicolo et al., 2007; Dickens, 2003; Panchuk et al., 2003). Here we show, using new 2.4-Myr-long Eocene deep ocean records, that the comparatively modest hyperthermals are much more numerous than previously documented, paced by the eccentricity of Earth's orbit and have shorter durations (~40 kyr) and more rapid recovery phases than the PETM. These findings point to the operation of fundamentally different forcing and feedback mechanisms than for the PETM, involving redistribution of carbon among Earth's readily exchangeable surface reservoirs rather than carbon exhumation from, and subsequent burial back into, the sedimentary reservoir. Specifically, we interpret our records to indicate repeated, large-scale releases of dissolved organic carbon (at least 1,600 gigatonnes) from the ocean by ventilation (strengthened oxidation) of the ocean interior. The rapid recovery of the carbon cycle following each Eocene hyperthermal strongly suggests that carbon was resequestered by the ocean, rather than the much slower process of silicate rock weathering proposed for the PETM (Zachos et al., 2005; 2003). Our findings suggest that these pronounced climate warming events were driven not by repeated releases of carbon from buried sedimentary sources (Zachos et al., 2008, Lourens et al., 2005; Nicolo et al., 2007; Dickens, 2003; Panchuk et al., 2003) but, rather, by patterns of surficial carbon redistribution familiar from younger intervals of Earth history.
Resumo:
The results of paleomagnetic studies of samples from DSDP Leg 78A are reported. For Site 541, the interval from 60 to 200 m sub-bottom was correlated with the Matuyama through Gilbert polarity epochs. For Site 543, the interval from 150 to 190 m sub-bottom was correlated with marine magnetic Anomalies 5C through 5E. Down-dip directions of tilted beds inferred from declination values for Sites 541 and 542 suggest a pattern of monoclinal folding. Results from basalt samples are comparable to those from other DSDP sites in relatively old basalts.
Resumo:
Holes 1209A and 1211A on Southern High, Shatsky Rise contain expanded, nearly continuous records of carbonate-rich sediment deposited in deep water of the equatorial Pacific Ocean during the Paleocene and Eocene. In this study, we document intervals of carbonate dissolution in these records by examining temporal changes in four parameters: carbonate content, coarse size fraction (>38 µm), benthic foraminiferal abundance, and planktonic foraminiferal fragmentation ratio. Carbonate content is not a sensitive indicator of carbonate dissolution in the studied sections, although rare intervals of low carbonate may reflect times of relatively high dissolution. The proportion of coarse size fraction does not accurately record carbonate dissolution either because the relative abundance of nannofossils largely determines the grain-size distribution. Benthic abundance and fragmentation covary (r**2 = 0.77) and are probably the best indicators for carbonate dissolution. For both holes, records of these parameters indicate two episodes of prominent dissolution. The first of these occurs in the upper Paleocene (~59-58 Ma) and the second in the middle to upper Eocene (~45-33.7 Ma). Other intervals of enhanced carbonate dissolution are located in the upper Paleocene (~56 Ma) and in the upper lower Eocene (~51 Ma). Enhanced preservation of planktonic foraminiferal assemblages marks the start of both the Paleocene and Eocene epochs.
Resumo:
Cyclic fluctuations in global sea level during epochs of warm greenhouse climate have remained enigmatic, because absence or subordinate presence of polar ice during these periods precludes an explanation by glacio-eustatic forcing. An alternative concept suggests that the water-bearing potential of groundwater aquifers is equal to that of ice caps and that changes in the dynamic balance of aquifer charge versus discharge, as a function of the temperature-related intensity of the hydrological cycle, may have driven eustasy during warm climates. However, this idea has long been neglected for two reasons: 1) the large storage potential of subsurface aquifers was confused with the much smaller capacity of rivers and lakes and 2) empirical data were missing that document past variations in the hydrological cycle in relation to eustasy. In the present study we present the first empirical evidence for changes in precipitation, continental weathering intensity and evaporation that correlate with astronomically (long obliquity) forced sea-level cycles during the warmest period of the Cretaceous (Cenomanian-Turonian). We compare sequence-stratigraphic data with changes in the terrigenous mineral assemblage in a low-latitude marine sedimentary sequence from the equatorial humid belt at the South-Tethyan margin (Levant carbonate platform, Jordan), thereby avoiding uncertainties from land-ocean correlations. Our data indicate covariance between cycles in weathering and sea level: predominantly chemical weathering under wet climate conditions is reflected by dominance of weathering products (clays) in deposits that represent sea-level fall (aquifer charge > discharge). Conversely, preservation of weathering-sensitive minerals (feldspars, epidote and pyroxenes) in transgressive sediments reflects decreased continental weathering due to dryer climate (aquifer discharge > charge). Based on our results we suggest that aquifer-eustasy represents a viable alternative to glacio-eustasy as a driver of cyclic 3rd-order sea-level fluctuations during the middle Cretaceous greenhouse climate, and it may have been a pervasive process throughout Earth history.
Resumo:
By analogy with the present-day ocean, primary productivity of paleoceans can be reconstructed using calculations based on content of organic carbon in sediments and their accumulation rates. Results of calculations based on published data show that primary productivity of organic carbon, mass of phosphorus involved in the process, and content of phosphorus in ocean waters were relatively stable during Cenozoic and Late Mesozoic. Prior to precipitation on the seafloor together with biogenic detritus, dissolved phosphorus could repeatedly be involved in the biogeochemical cycle. Therefore, only less than 0.1% of phosphorus is retained in bottom sediments. Bulk phosphorus accumulation rate in ocean sediments is partly consistent with calculated primary productivity. Some epochs of phosphate accumulation also coincide with maxima of primary productivity and minima of the fossilization coefficient of organic carbon. The latter fact can testify to episodes of acceleration of organic matter mineralization and release of phosphorus from sediments leading to increase in the phosphorus reserve in paleoceans and phosphate accumulation in some places.
Resumo:
The origin of friable sediments blanketing the Barents Sea shelf is considered. It is shown that their characteristic seismoacoustic record patterns reflect low degree of diagenetic transformations and indicates continuous sedimentation. According to traditional views, this single sedimentary complex also includes diamicton, and the section is interpreted as a three-unit structure: diamicton, which is considered a till; the overlying friable sediments accumulated under different conditions of deglaciation in glaciomarine settings; and the postglacial marine sediments. It is demonstrated that such views are inconsistent with geomorphologic features (datings by physical methods included) indicating a prolonged hiatus that separates epochs of the diamicton accumulation and formation of friable sediments. The analysis revealed that the composition, vertical succession, and lateral distribution of different lithological types of friable sediments are related to the regular spatiotemporal replacements of different facies settings in the transgressing Arctic sea rather than by the glacial process. This inference is confirmed by the composition of foraminiferal assemblages.
Resumo:
Distribution of planktonic foraminiferal tests was studied in four drill cores of Upper Quaternary sediments from the zone of influence of the Canary upwelling and in nine sediment cores from the zone of the Benguela upwelling. Paleotemperatures were reconstructed from these data. It was established that under conditions during stadials, interstadials, and interglacials of Quaternary time, the upwelling existed continuously, intensifying and expanding during colder epochs and weakening and contracting in the warmer intervals. During the last stadial (about 18000 yrs ago), relative cooling of sea waters as compared to central regions of the ocean in the zone of the Canary upwelling was not lower than 9°C (4.5°C higher than at present time), and in the zone of the Benguela upwelling it was not lower than 15°C (8.5°C higher than at present time).
Resumo:
The basalts recovered at Holes 651A and 655B appear to carry a single component remanent magnetization, which is generally of reversed polarity. These magnetizations are consistent with eruption during the Matuyama (651A) and Gilbert (655B) polarity epochs. The blocking temperature spectra and the Js/T curves indicate that titanomaghemite is the principal remanence carrier. The lower mean destructive field (MDF) and higher susceptibility at 651A probably indicates a lower mean oxidation state at this hole relative to 655B, which may simply reflect the age difference between the two basalt sequences. At both holes, a decreasing downcore trend both in natural remanent magnetization (NRM) and susceptibility probably indicates that maghemitization (from primary titanomagnetite) increases downcore. An interval of high coercivity at hole 655B (119.80-151.45 mbsf) appears to define a magnetically distinct unit within the basalt sequence.
Resumo:
Three bottom sediment cores were collected from the top, slope, and foot of a small topographic high located near the West European continental rise within the Porcupine abyssal plain at the battleship Bismark wreck site. Using high-efficient gas chromatography technique we determined content and examined molecular composition of n-alkane fraction of hydrocarbons and phenol compounds of lignin. n-Alkane and phenol concentrations in bottom sediments of all three cores were low both in values per unit mass of sediments and in organic matter composition that is typical for pelagic deposits of the World Ocean. They vary from 0.07 to 2.01 µg/g of dry sediment and from 0.0001 to 0.01% of TOC; phenol ranges are from 1.43 to 11.1 µg/g and from 0.03 to 0.6%. Non-uniform supply of terrigenous matter to the bottom under conditions of changes in sedimentation environment in different geological epochs is the principal reason for significant variations in n-alkane and lignin concentrations with depth in the cores. Lignin and its derivatives make the main contribution to formation of organic matter composition of the region in study. With respect to n-alkane and lignin concentrations organic matter of deposits of the West European Basin is composed of remains of higher plants and of autochtonous organic matter of marine flora; they have mixed terrigenous-autochtonous (terrigenous-planktonogenic) origin.
Resumo:
Numerous fresh ash layers comprise about 0.3% by volume of Neogene to Holocene sediments drilled at Leg 104 Sites 642 and 643 (Vøring Plateau, North Atlantic). Median grain sizes of the ashes are about 100 /µm and maximum grain sizes range up to 1200 µm. Rhyolitic pumice shards dominate, with minor bubble wall shards. Basaltic shards are poorly vesicular and blocky or round. Phenocrystic plagioclase, zircon, and clinopyroxene occur in the rhyolitic, plagioclase, and clinopyroxene phenocrysts and basaltic lithics in the basaltic tephra. Quartz, amphibole, clinozoisite, and rutile are interpreted as xenocrysts. All ash layers are well-sorted and represent distal fallout from major explosive eruptions. Most ashes are rhyolitic (high-K and low-K) in composition, some are bimodal (tholeiitic and rhyolitic). Early Miocene tephra is dominantly basaltic. Iceland is inferred to be the likely source region for most ashes. Late Miocene high-K rhyolites may have originated from the K-rich Jan Mayen magmatic province. One Quaternary layer with biotite and alkali feldspar phenocrysts may have been derived from Jan Mayen Island. Four individual Pliocene to Holocene ash layers from Sites 642 and 643 can be correlated fairly well. Upper Miocene layers are tentatively correlated as a sequence between Sites 642 and 643. Average calculated layer frequencies are about three layers/m.y. through the Pliocene and Pleistocene and five to eight layers per m.y. through the middle and late Miocene, suggesting rather continuous volcanic activity in the North Atlantic. Episodic magmatic activity during Neogene epochs in this part of the North Atlantic, as postulated in the literature, cannot be confirmed.
Resumo:
The Benguela Current, located off the west coast of southern Africa, is tied to a highly productive upwelling system**1. Over the past 12 million years, the current has cooled, and upwelling has intensified**2, 3, 4. These changes have been variously linked to atmospheric and oceanic changes associated with the glaciation of Antarctica and global cooling**5, the closure of the Central American Seaway**1, 6 or the further restriction of the Indonesian Seaway**3. The upwelling intensification also occurred during a period of substantial uplift of the African continent**7, 8. Here we use a coupled ocean-atmosphere general circulation model to test the effect of African uplift on Benguela upwelling. In our simulations, uplift in the East African Rift system and in southern and southwestern Africa induces an intensification of coastal low-level winds, which leads to increased oceanic upwelling of cool subsurface waters. We compare the effect of African uplift with the simulated impact of the Central American Seaway closure9, Indonesian Throughflow restriction10 and Antarctic glaciation**11, and find that African uplift has at least an equally strong influence as each of the three other factors. We therefore conclude that African uplift was an important factor in driving the cooling and strengthening of the Benguela Current and coastal upwelling during the late Miocene and Pliocene epochs.
Resumo:
We report the Sr, Nd and Pb isotopic compositions (1) of 66 lava flows and dikes spanning the circa 15 Myr subaerial volcanic history of Gran Canaria and (2) of five Miocene through Cretaceous sediment samples from DSDP site 397, located 100 km south of Gran Canaria. The isotope ratios of the Gran Canaria samples vary for 87Sr/86Sr: 0.70302-0.70346, for 143Nd/144Nd: 0.51275-0.51298, and for 206Pb/204Pb: 18.76-20.01. The Miocene and the Pliocene-Recent volcanics form distinct trends on isotope correlation diagrams. The most SiO2-undersaturated volcanics from each group have the least radiogenic Sr and most radiogenic Pb, whereas evolved volcanics from each group have the most radiogenic Sr and least radiogenic Pb. In the Pliocene-Recent group, the most undersaturated basalts also have the most radiogenic Nd, and the evolved volcanics have the least radiogenic Nd. The most SiO2-saturated basalts have intermediate compositions within each age group. Although the two age groups have overlapping Sr and Nd isotope ratios, the Pliocene-Recent volcanics have less radiogenic Pb than the Miocene volcanics. At least four components are required to explain the isotope systematics of Gran Canaria by mixing. There is no evidence for crustal contamination in any of the volcanics. The most undersaturated Miocene volcanics fall within the field for the two youngest and westernmost Canary Islands in all isotope correlation diagrams and thus appear to have the most plume-like (high 238U/204Pb) HIMU-like composition. During the Pliocene-Recent epochs, the plume was located to the west of Gran Canaria. The isotopic composition of the most undersaturated Pliocene-Recent volcanics may reflect entrainment of asthenospheric material (with a depleted mantle (DM)-like composition), as plume material was transported through the upper asthenosphere to the base of the lithosphere beneath Gran Canaria. The shift in isotopic composition with increasing SiO2-saturation in the basalts and degree of differentiation for all volcanics is interpreted to reflect assimilation of enriched mantle (EM1 and EM2) in the lithosphere beneath Gran Canaria. This enriched mantle may have been derived from the continental lithospheric mantle beneath the West African Craton by thermal erosion or delamination during rifting of Pangaea. This study suggests that the enriched mantle components (EM1 and EM2) may be stored in the shallow mantle, whereas the HIMU component may have a deeper origin.
Resumo:
A brief (~150 kyr) period of widespread global average surface warming marks the transition between the Paleocene and Eocene epochs, ~56 million years ago. This so-called "Paleocene-Eocene thermal maximum" (PETM) is associated with the massive injection of 13C-depleted carbon, reflected in a negative carbon isotope excursion (CIE). Biotic responses include a global abundance peak (acme) of the subtropical dinoflagellate Apectodinium. Here we identify the PETM in a marine sedimentary sequence deposited on the East Tasman Plateau at Ocean Drilling Program (ODP) Site 1172 and show, based on the organic paleothermometer TEX86, that southwest Pacific sea surface temperatures increased from ~26 °C to ~33°C during the PETM. Such temperatures before, during and after the PETM are >10 °C warmer than predicted by paleoclimate model simulations for this latitude. In part, this discrepancy may be explained by potential seasonal biases in the TEX86 proxy in polar oceans. Additionally, the data suggest that not only Arctic, but also Antarctic temperatures may be underestimated in simulations of ancient greenhouse climates by current generation fully coupled climate models. An early influx of abundant Apectodinium confirms that environmental change preceded the CIE on a global scale. Organic dinoflagellate cyst assemblages suggest a local decrease in the amount of river run off reaching the core site during the PETM, possibly in concert with eustatic rise. Moreover, the assemblages suggest changes in seasonality of the regional hydrological system and storm activity. Finally, significant variation in dinoflagellate cyst assemblages during the PETM indicates that southwest Pacific climates varied significantly over time scales of 103 - 104 years during this event, a finding comparable to similar studies of PETM successions from the New Jersey Shelf.
Resumo:
'Hyperthermals' are intervals of rapid, pronounced global warming known from six episodes within the Palaeocene and Eocene epochs (~65-34 million years (Myr) ago) (Zachos et al., 2005, doi:10.1126/science.1109004; 2008, doi:10.1038/nature06588; Roehl et al., 2007, doi:10.1029/2007GC001784; Thomas et al., 2000; Cramer et al., 2003, doi:10.1029/2003PA000909; Lourens et al., 2005, doi:10.1038/nature03814; Petrizzo, 2005, doi:10.2973/odp.proc.sr.198.102.2005; Sexton et al., 2006, doi:10.1029/2005PA001253; Westerhold et al., 2007, doi:10.1029/2006PA001322; Edgar et al., 2007, doi:10.1038/nature06053; Nicolo et al., 2007, doi:10.1130/G23648A.1; Quillévéré et al., 2008, doi:10.1016/j.epsl.2007.10.040; Stap et al., 2010, doi:10.1130/G30777.1). The most extreme hyperthermal was the 170 thousand year (kyr) interval (Roehl et al., 2007) of 5-7 °C global warming (Zachos et al., 2008) during the Palaeocene-Eocene Thermal Maximum (PETM, 56 Myr ago). The PETM is widely attributed to massive release of greenhouse gases from buried sedimentary carbon reservoirs (Zachos et al., 2005; 2008; Lourenbs et al., 2005; Nicolo et al., 2007; Dickens et al., 1995, doi:10.1029/95PA02087; Dickens, 2000; 2003, doi:10.1016/S0012-821X(03)00325-X; Panchuk et al., 2008, doi:10.1130/G24474A.1) and other, comparatively modest, hyperthermals have also been linked to the release of sedimentary carbon (Zachos et al., 2008, Lourens et al., 2005; Nicolo et al., 2007; Dickens, 2003; Panchuk et al., 2003). Here we show, using new 2.4-Myr-long Eocene deep ocean records, that the comparatively modest hyperthermals are much more numerous than previously documented, paced by the eccentricity of Earth's orbit and have shorter durations (~40 kyr) and more rapid recovery phases than the PETM. These findings point to the operation of fundamentally different forcing and feedback mechanisms than for the PETM, involving redistribution of carbon among Earth's readily exchangeable surface reservoirs rather than carbon exhumation from, and subsequent burial back into, the sedimentary reservoir. Specifically, we interpret our records to indicate repeated, large-scale releases of dissolved organic carbon (at least 1,600 gigatonnes) from the ocean by ventilation (strengthened oxidation) of the ocean interior. The rapid recovery of the carbon cycle following each Eocene hyperthermal strongly suggests that carbon was resequestered by the ocean, rather than the much slower process of silicate rock weathering proposed for the PETM (Zachos et al., 2005; 2003). Our findings suggest that these pronounced climate warming events were driven not by repeated releases of carbon from buried sedimentary sources (Zachos et al., 2008, Lourens et al., 2005; Nicolo et al., 2007; Dickens, 2003; Panchuk et al., 2003) but, rather, by patterns of surficial carbon redistribution familiar from younger intervals of Earth history.