5 resultados para Integrable equations in Physics
em Publishing Network for Geoscientific
Resumo:
During Ocean Drilling Program Leg 123, two sites were drilled in the deep Indian Ocean. Physical properties were measured in soft Quaternary and Lower Cretaceous sediments to relatively fresh, glass-bearing pillow lavas and massive basalts. Porosities ranged from 89% near the seafloor to 1.6% for the dense basalts. This self-consistent set of measurements permitted some descriptive models of physical properties to be more rigorously tested than before. Predictive relationships between porosity and compressional-wave velocity have generally been based upon the Wyllie time average equation. However, this equation does not adequately describe the actual relationship between these two parameters, and many have attempted to improve it. In most cases, models were derived by testing them against a set of data representing a relatively narrow range of porosity values. Similarly, the use of the Wyllie equation has often been justified by a pseudolinear fit to the data over a narrow range of porosity values. The limitations of the Wyllie relationship have been re-emphasized here. A semi-empirical acoustic impedance equation is developed that provides a more accurate porosity-velocity transform, using realistic material parameters, than has hitherto been possible. A closer correlation can be achieved with this semi-empirical relationship than with more theoretically based equations. In addition, a satisfactory empirical equation can be used to describe the relationship between thermal conductivity and porosity. If enough is known about core sample lithologies to provide estimates of the matrix and pore water parameters, then these predictive equations enable one to describe completely the behavior of a saturated rock core in terms of compressional-wave velocity, thermal conductivity, porosity, and bulk density.
Resumo:
Most of the isotopic paleotemperature equations used for paleoceanographic reconstructions have been derived from culture experiments or inorganic precipitates of calcium carbonate. To test these equations in the modern ocean, we measured the oxygen isotope composition of planktonic foraminifera (Globigerinoides ruber, Globigerinoides sacculifer, Globigerina bulloides and Neogloboquadrina pachyderma) collected from Atlantic and Southern Ocean surface waters, and added published plankton tow data from the Pacific, Indian and Arctic Oceans. The resulting species-specific regression equations of the temperature:d18O relationships for G. ruber, G. sacculifer and G. bulloides are statistically indistinguishable. The equations derived for G. sacculifer and G. bulloides agree with relationships obtained from laboratory experiments, in which these species were cultured at pH values close to modern surface waters. The equation derived from N. pachyderma has a significantly lower slope and offset than the other three species but produces a regression equation that is nearly identical to the one for the epifaunal benthic foraminifer Cibicides sp. Our work on plankton tow and pumped samples indicates that culture-derived equations appear to be more appropriate for predicting the absolute d18O of the species examined compared to equations derived from inorganic precipitates. However, over the oceanic temperature range, the slopes of the equations we derive for living species agree with the slopes obtained from inorganic precipitates.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. Data sets in this collection provide methodological and environmental context to all samples collected during the Tara Oceans Expedition (2009-2013).
Resumo:
The strength and geometry of the Atlantic meridional overturning circulation is tightly coupled to climate on glacial-interglacial and millennial timescales, but has proved difficult to reconstruct, particularly for the Last Glacial Maximum. Today, the return flow from the northern North Atlantic to lower latitudes associated with the Atlantic meridional overturning circulation reaches down to approximately 4,000 m. In contrast, during the Last Glacial Maximum this return flow is thought to have occurred primarily at shallower depths. Measurements of sedimentary 231Pa/230Th have been used to reconstruct the strength of circulation in the North Atlantic Ocean, but the effects of biogenic silica on 231Pa/230Th-based estimates remain controversial. Here we use measurements of 231Pa/230Th ratios and biogenic silica in Holocene-aged Atlantic sediments and simulations with a two-dimensional scavenging model to demonstrate that the geometry and strength of the Atlantic meridional overturning circulation are the primary controls of 231Pa/230Th ratios in modern Atlantic sediments. For the glacial maximum, a simulation of Atlantic overturning with a shallow, but vigorous circulation and bulk water transport at around 2,000 m depth best matched observed glacial Atlantic 231Pa/230Th values. We estimate that the transport of intermediate water during the Last Glacial Maximum was at least as strong as deep water transport today.