5 resultados para Inorganic chemistry

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clay mineralogic and inorganic geochemical investigations of Cretaceous and Cenozoic sediments of the western Gulf of Mexico lead to the following main conclusions. (1) Transition of lowermost Cretaceous continental to marine sedimentation is marked by a clay evaporitic stage, north of the Campeche Escarpment. (2) Existence of combined mineralogic and geochemical stratigraphy allows us to propose correlations between Sites 535 and 540, especially for the Albian. (3) Predominance of detrital clay assemblages is indicative of hot and variably humid continental climate until the early late Cenozoic. (4) Tectonic destabilization of the margins of Gulf of Mexico occurred at different periods, especially until the middle Cretaceous, with a mixed erosion of rocks and soils and temporary oxidized conditions of deposition. (5) Successive developments of confined perimarine basins occurred from the earliest Cretaceous until the Miocene, chiefly in the Florida area. The sources of inorganic materials were chiefly situated on the east of the studied area until the late Tertiary and after that in the Mississippi River basin. (6) Occasionally, volcanic activity influenced the clay mineralogy and mainly the geochemistry, and possibly contributed to the rather strong magnesian character of the deposition until the late Paleogene. (7) The argillaceous diagenesis is weak; variability of the carbonate diagenesis is marked by the relation Sr = f(CaO) and chiefly depends on the depth of burial, the clay content, the porosity, and the geologic age.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various types of abrupt/millennial-scale climate variability such as Dansgaard/Oeschger and Heinrich Events characterized the last glacial period. Over the last decade, a number of studies demonstrated that such millennial-scale climate variability was not limited to the last glacial but inherent to Quaternary climate. Here we review the occurrence and origin of millennial ice-rafting events in the North Atlantic during the late Pliocene and Pleistocene (last 3.4 Ma) with a special focus on North Atlantic Hudson Strait (HS) Heinrich(-like) Events. Besides a clear biomarker signature, we show that Heinrich Layers 5, 4, 2, and 1 in marine sediment cores from across the North Atlantic all bear the organic geochemical fingerprint of the Hudson area. Using this framework and combining previously published results, detailed investigations into the organic and inorganic chemistry of ice-rafted debris (IRD) found across the North Atlantic demonstrate that prior to MIS 16 (~ 650 ka) IRD in the North Atlantic did not originate from the Hudson area of northern Canada. The signature of this early IRD is distinctly different compared to that of HS Heinrich Layers. Rather ice-rafting events during the late Pliocene and early Pleistocene predominantly emanated from the calving of the Greenland and Fennoscandian ice sheets and possibly minor contributions from local ice streams from the North American and British ice sheets. Compared to North Atlantic HS Heinrich Events, these early Pleistocene IRD-events had a limited impact on surface water characteristics in the North Atlantic. North Atlantic HS Heinrich(-like) Events first occurred during MIS 16. At the same time, the dominant frequency in silicate-rich IRD accumulation shifted from the obliquity (41-ka) to a 100-ka frequency across the North Atlantic. Iceberg survivability or a change in iceberg trajectory likely did not control this change in IRD-regime. These results lend further support for the existing hypothesis that an increase in size (thickness) of the Laurentide ice sheet controls the occurrence of North Atlantic HS Heinrich Events, favoring an internal dynamic mechanism for their occurrence.