2 resultados para Information Technology. Systems Integration. Enterprise Architecture. Case Study. SINFO. SEDIS

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selection of metrics for ecosystem restoration programs is critical for improving the quality of monitoring programs and characterizing project success. Moreover it is oftentimes very difficult to balance the importance of multiple ecological, social, and economical metrics. Metric selection process is a complex and must simultaneously take into account monitoring data, environmental models, socio-economic considerations, and stakeholder interests. We propose multicriteria decision analysis (MCDA) methods, broadly defined, for the selection of optimal sets of metrics to enhance evaluation of ecosystem restoration alternatives. Two MCDA methods, a multiattribute utility analysis (MAUT), and a probabilistic multicriteria acceptability analysis (ProMAA), are applied and compared for a hypothetical case study of a river restoration involving multiple stakeholders. Overall, the MCDA results in a systematic, unbiased, and transparent solution, informing restoration alternatives evaluation. The two methods provide comparable results in terms of selected metrics. However, because ProMAA can consider probability distributions for weights and utility values of metrics for each criteria, it is suggested as the best option if data uncertainty is high. Despite the increase in complexity in the metric selection process, MCDA improves upon the current ad-hoc decision practice based on the consultations with stakeholders and experts, and encourages transparent and quantitative aggregation of data and judgement, increasing the transparency of decision making in restoration projects. We believe that MCDA can enhance the overall sustainability of ecosystem by enhancing both ecological and societal needs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Existing models estimating oil spill costs at sea are based on data from the past, and they usually lack a systematic approach. This make them passive, and limits their ability to forecast the effect of the changes in the oil combating fleet or location of a spill on the oil spill costs. In this paper we make an attempt towards the development of a probabilistic and systematic model estimating the costs of clean-up operations for the Gulf of Finland. For this purpose we utilize expert knowledge along with the available data and information from literature. Then, the obtained information is combined into a framework with the use of a Bayesian Belief Networks. Due to lack of data, we validate the model by comparing its results with existing models, with which we found good agreement. We anticipate that the presented model can contribute to the cost-effective oil-combating fleet optimization for the Gulf of Finland. It can also facilitate the accident consequences estimation in the framework of formal safety assessment (FSA).