664 resultados para Indian Ocean on monsoon

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monograph presents results of comprehensive geological and geophysical studies carried out in 1973 and 1976 during Cruises 54 and 58 of R/V "Vityaz" in the Eastern Indian Ocean. On the base of obtained data a description of topography, magnetic and gravity fields, structure of the sedimentary series and deep crustal structure of the East Indian Ridge, Central, West Australian and Cocos Basins, the Sunda Trench has been done. Materials on petrography, petrochemistry and geochemistry of igneous rocks in the region have been summarized. New geological and geophysical information has been compared with with DSDP materials. Tectonics and geological history of the Eastern Indian Ocean are under consideration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the Netherlands Indian Ocean Project (NIOP, 1992-1993) sediment community oxygen consumption (SCOC) was measured on two continental margins in the Indian Ocean with different productivity: the productive upwelling region off Yemen-Somalia and the supposedly less productive Kenyan margin, which lacks upwelling. The two margins also differ in terms of river input (Kenya) and the more severe oxygen minimum in the Arabian Sea. Simultaneously with SCOC, distributions of benthic biomass and phytodetritus were studied. Our expectation was that benthic processes in the upwelling margin of the Arabian Sea would be relatively enhanced as a result of the higher productivity. On the Kenyan margin, SCOC (range 1-36 mmol/m**2/d) showed a clear decrease with increasing water depth, and little temporal variation was detected between June and December. Highest SCOC values of this study were recorded at 50 m depth off Kenya, with a maximum of 36 mmol/m**2/d in the northernmost part. On the margin off Yemen-Somalia, SCOC was on average lower and showed little downslope variation, 1.8-5.7 mmol/m**2/d, notably during upwelling, when the zone between 70 and 1700 m was covered with low O2 water (10-50 µM). After cessation of upwelling, SCOC at 60 m depth off Yemen increased from 5.7 to 17.6 mmol/m**2/d concurrently with an increase of the near-bottom O2 concentration (from 11 to 153 µM), suggesting a close coupling between SCOC and O2 concentration. This was demonstrated in shipboard cores in which the O2 concentration in the overlying water was raised after the cores were first incubated under in situ conditions (17 µM O2). This induced an immediate and pronounced increase of SCOC. Conversely, at deeper stations permanently within the oxygen minimum zone (OMZ), SCOC showed little variation between monsoon periods. Hence, organic carbon degradation in sediments on a large part of the Yemen slope appears hampered by the oxygen deficiency of the overlying water. Macrofauna biomass and the pooled biomass of smaller organisms, estimated by the nucleic acid content of the sediment, had comparable ranges in the two areas in spite of more severe suboxic conditions in the Arabian Sea. At the Kenyan shelf, benthic fauna (macro- and meiofauna) largely followed the spatial pattern of SCOC, i.e. high values on the northern shelf-upper slope and a downslope decrease. On the Yemen-Somali margin the macrofauna distribution was more erratic. Nucleic acids displayed no clear downslope trend on either margin owing to depressed values in the OMZ, perhaps because of adverse effects of low O2 on small organisms (meiofauna and microbes). Phytodetritus distributions were different on the two margins. Whereas pigment levels decreased downslope along the Kenya margin, the upper slope off Yemen (800 m) had a distinct accumulation of mainly refractory carotenoid pigments, suggesting preservation under low 02. Because the accumulations of Corg and pigments on the Yemen slope overlap only partly, we infer a selective deposition and preservation of labile particles on the upper slope, whereas refractory material undergoes further transport downslope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Multi-Sensor Core Logger (MSCL) enables non-destructive, quasi-continuous measuroments of physical properties, reducing the time needed for discrete sample analysis. Density, compressional wave velocity (Vp), and magnetic susceptibility are measured on water-saturated sediment cores. Rapid variations in the lithology can thus be more easily recognized. The advantages of MSCL measurements over traditional sedimentological investigation methods are illustrated using several examples. Density-Vp relationships provide detailed lithological information prior to splitting the sediment cores. In terrigenous sediments, density increases with Vp, whereas in biogenic sediments it decreases. In biogenic sediments in the South Atlantic, low densities and high Vp are associated with high opal content. In biogenic sediments in the Peru Basin, density increases with carbonate content. Carbonate, which is very important for deep-sea environmental protection and for paleoclimatic studies, can be determined quantitatively from MSCL measurements in this area. In terrigenous sediments in the Bengal Fan, the acoustic impedance (the product of density and Vp) increases with grain size. There, the grain-size distribution can be rapidly derived from the acoustic impedance. Moreover, in hemipelagic sediments in the Bengal Fan, it is possible to correlate variations in magnetic susceptibility with cyclic changes in the earth's orbital parameters - an important prerequisite for detailed stratigraphic studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Historically, the Holocene has been considered an interval of relatively stable climate. However, recent studies from the northern Arabian Sea (Netherlands Indian Ocean Program 905) suggested high-amplitude climate shifts in the early and middle Holocene based on faunal and benthic isotopic proxy records. We examined benthic foraminiferal faunal and stable isotopic data from Ocean Drilling Program (ODP) Site 723 and total organic carbon data from ODP Site 724, Oman Margin (808 and 593 m water depths, respectively). At Site 723 the mid-Holocene shift in d18O values of infaunal benthic species Uvigerina peregrina (1.4 per mil) is 3 times larger than that of epifaunal benthic species Cibicides kullenbergi recorded at Site NIOP 905 off Somalia. However, none of the five other benthic species we measured at Hole 723A exhibits such a shift in d18O. We speculate that the late Holocene d18O decrease in U. peregrina represents species-specific changes in ecological habitat or food preference in response to changes in surface and deep ocean circulation. While the stable isotopic data do not appear to indicate a middle Holocene climatic shift, our total organic carbon and benthic faunal assemblage data do indicate that the early Holocene deep Arabian Sea was influenced by increased ventilation perhaps by North Atlantic Deep Water and/or Circumpolar Deep Water incursions into the Indian Ocean, leading to remineralization of organic matter and a relatively weak early Holocene oxygen minimum zone in the northwest Arabian Sea in spite of strong summer monsoon circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present volume gives the observed physical and chemical data obtained by R.V. "Meteor" in the Indian Ocean during cruise 1964/65. The tables are based on the computations made by the National Oceanographic Data Center (NODC) in Washington. In addition to the normally communicated data, the tables contain four chemical parameters: alkalinity, ammonia, fluoride, and calcium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Asian monsoon system governs seasonality and fundamental environmental characteristics in the study area from which two distinct peculiarities are most notable: upwelling and convective mixing in the Arabian Sea and low surface salinity and stratification in the Bay of Bengal due to high riverine input and monsoonal precipitation. The respective oceanography sets the framework for nutrient availability and productivity. Upwelling ensures high nitrate concentration with temporal/spatial Si limitation; freshwater-induced stratification leads to reduced nitrogen input from the subsurface but Si enrichment in surface waters. Ultimately, both environments support high abundance of diatoms, which play a central role in the export of organic matter. It is speculated that, additional to eddy pumping, nitrogen fixation is a source of N in stratified waters and contributes to the low-d15N signal in sinking particles formed under riverine impact. Organic carbon fluxes are best correlated to opal but not to carbonate, which is explained by low foraminiferal carbonate fluxes within the river-impacted systems. This observation points to the necessity of differentiating between carbonate sources for carbon flux modeling. As evident from a compilation of previously published and new data on labile organic matter composition (amino acids and carbohydrates), organic matter fluxes are mainly driven by direct input from marine production, except the site off Pakistan where sedimentary input of (marine) organic matter is dominant during the NE monsoon. The explanation of apparently different organic carbon export efficiency calls for further investigations of, for example, food web structure and water column processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The studies described here base mainly on sedimentary material collected during the "Indian Ocean Expedition" of the German research vessel "Meteor" in the region of the Indian-Pakistan continental margin in February and March 1965. Moreover,samples from the mouth of the Indus-River were available, which were collected by the Pakistan fishing vessel "Machhera" in March 1965. Altogether, the following quantities of sedimentary material were collected: 59.73 m piston cores. 54.52 m gravity cores. 33 box grab samples. 68 bottom grab samples Component analyses of the coarse fraction were made of these samples and the sedimentary fabric was examined. Moreover, the CaCO3 and Corg contents were discussed. From these investigations the following history of sedimentation can be derived: Recent sedimentation on the shelf is mainly characterized by hydrodynamic processes and terrigenous supply of material. In the shallow water wave action and currents running parallel to the coast, imply a repeated reworking which induces a sorting of the grains and layering of the sediments as well as a lack of bioturbation. The sedimentation rate is very high here. From the coast-line down to appr. 50 m the sediment becomes progressively finer, the conditions of deposition become less turbulent. On the outer shelf the sediment is again considerably coarser. It contains many relicts of planktonic organisms and it shows traces of burrowing. Indications for redeposition are nearly missing, a considerable part of the fine fraction of the sediments is, however, whirled up and carried away. In wide areas of the outer shelf this stirring has gained such a degree that recent deposits are nearly completely missing. Here, coarse relict sands rich in ooids are exposed, which were formed in very shallow stirred water during the time when the sea reached its lowest level, i.e. at the turn of the Pleistocene to the Holocene. Below the relict sand white, very fine-grained aragonite mud was found at one location (core 228). This aragonite mud was obviously deposited in very calm water of some greater depth, possibly behind a reef barrier. Biochemic carbonate precipitation played an important part in the formation of relict sands and aragonite muds. In postglacial times the relict sands were exposed for long periods to violent wave action and to areal erosion. In the present days they are gradually covered by recent sediments proceeding from the sides. On the continental margin beyond the shelf edge the distribution of the sediments is to a considerable extent determined by the morphology of the sea bottom. The material originating from the continent and/or the shelf, is less transported by action of the water than by the force of gravity. Within the range of the uppermost part of the continental slope recent sedimentation reaches its maximum. Here the fine material is deposited which has been whirled up in the zone of the relict sands. A laminated fine-grained sediment is formed here due to the very high sedimentation rate as well as to the extremely low O2-content in the bottom water, which prevents life on the bottom of the sea and impedes thus also bioturbation. The lamination probaly reflects annual variation in deposition and can be attributed to the rhythm of the monsoon with its effects on the water and the weather conditions. In the lower part of the upper continental slope sediments are to be found which show in varying intensity, intercalations of fine material (silt) from the shelf, in large sections of the core. These fine intercalations of allochthonous material are closely related to the autochthonous normal sediment, so that a great number of small individual depositional processes can be inferred. In general the intercalations are missing in the uppermost part of the cores; in the lower part they can be met in different quantities, and they reach their maximum frequency in the upper part of the lower core section. The depositions described here were designated as turbid layer sediments, since they get their material from turbid layers, which transport components to the continental slope which have been whirled up from the shelf. Turbidites are missing in this zone. Since the whole upper continental slope shows a low oxygen-content of the bottom water the structure of the turbid layer sediments is more or less preserved. The lenticular-phacoidal fine structure does, however, not reflect annual rhythms, but sporadic individual events, as e.g. tsunamis. At the lower part of the continental slope and on the continental rise the majority of turbidites was deposited, which, during glacial times and particularly at the beginning of the post-glacial period, transported material from the zone of relict sands. The Laccadive Ridge represented a natural obstacle for the transport of suspended sediments into the deep sea. Core SIC-181 from the Arabian Basin shows some intercalations of turbidites; their material, however, does not originate from the Indian Shelf, but from the Laccadive Ridge. Within the range of the Indus Cone it is surprising that distinct turbidites are nearly completely missing; on the other hand, turbid layer sediments are to be found. The bottom of the sea is showing still a slight slope here, so that the turbidites funneled through the Canyon of the Swatch probably rush down to greater water depths. Due to the particularly large supply of suspended material by theIndus River the turbid layer sediments show farther extension than in other regions. In general the terrigenous components are concentrated on the Indus Cone. It is within the range of the lower continental slope that the only discovery of a sliding mass (core 186) has been located. It can be assumed that this was set in motion during the Holocene. During the period of time discussed here the following development of kind and intensity of the deposition of allochthonous material can be observed on the Indian-Pakistan continental margin: At the time of the lowest sea level the shelf was only very narrow, and the zone in which bottom currents were able to stir up material by oscillating motion, was considerably confined. The rivers flowed into the sea near to the edge of the shelf. For this reason the percentage of terrigenous material, quartz and mica is higher in the lower part of many cores (e.g. cores 210 and 219) than in the upper part. The transition from glacial to postglacial times caused a series of environmental changes. Among them the rise of the sea level (in the area of investigation appr. 150 m) had the most important influence on the sedimentation process. In connection with this event many river valleys became canyons, which sucked sedimentary material away from the shelf and transported it in form of turbidites into the deep sea. During the rise of the sea level a situation can be expected with a maximum area of the comparatively plane shelf being exposed to wave action. During this time the process of stirring up of sediments and formation of turbid layers will reach a maximum. Accordingly, the formation of turbidites and turbid layer sediments are most frequent at the same time. This happened in general in the older polstglacial period. The present day high water level results in a reduced supply of sediments into the canyons. The stirring up of sediments from the shelf by wave action is restricted to the finest material. The missing of shelf material in the uppermost core sections can thus be explained. The laminated muds reflect these calm sedimentation conditions as well. In the southwestern part of the area of investigation fine volcanic glass was blown in during the Pleistocene, probably from the southeast. It has thus become possible to correlate the cores 181, 182, 202. Eolian dust from the Indian subcontinent represents probably an important component of the deep sea sediments. The chemism of the bottom as well as of the pore water has a considerable influence on the development of the sediments. Of particular importance in this connection is a layer with a minimum content of oxygen in the sea water (200-1500 m), which today touches the upper part of the continental slope. Above and beyond this oxygen minimum layer somewhat higher O2-values are to be observed at the sea bottom. During the Pleistocene the oxygen minimum layer has obviously been locatedin greater depth as is indicated by the facies of laminated mud occuring in the lower part of core 219. The type of bioturbation is mainly determined by the chemism. Moreover, the chemism is responsible for a considerable selective dissolution, either complete or partial, of the sedimentary components. Within the range of the oxygen minimum layer an alkaline milieu is developed at the bottom. This causes a complete or partial dissolution of the siliceous organisms. Here, bioturbation is in general completely missing; sometimes small pyrite-filled burrowing racks are found. In the areas rich in O2 high pH-values result in a partial dissolution of the calcareous shells. Large, non-pyritized burrowing tracks characterize the type of bioturbation in this environment. A study of the "lebensspuren" in the cores supports the assumption that, particularly within the region of the Laccadive Basin, the oxygen content in the bottom sediments was lower than during the Holocene. This may be attributed to a high sedimentation rate and to a lower O2-content of the bottom water. The composition of the allochthonous sedimentary components, detritus and/or volcanic glass may locally change the chemism to a considerable extent for a certain time; under such special circumstances the type of bioturbation and the state of preservation of the components may be different from those of the normal sediment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 6200 year old peat sequence, cored in a volcanic crater on the sub-Antarctic Ile de la Possession (Iles Crozet), has been investigated, based on a multi-proxy approach. The methods applied are macrobotanical (mosses, seeds and fruits) and diatom analyses, complemented by geochemical (Rock-Eval6) and rock magnetic measurements. The chronology of the core is based on 5 radiocarbon dates. When combining all the proxy data the following changes could be inferred. From the onset of the peat formation (6200 cal yr BP) until ca. 5550 cal yr BP, biological production was high and climatic conditions must have been relatively warm. At ca. 5550 cal yr BP a shift to low biological production occurred, lasting until ca. 4600 cal yr BP. During this period the organic matter is well preserved, pointing to a cold and/or wet environment. At ca. 4600 cal yr BP, biological production increased again. From ca. 4600 cal yr BP until ca. 4100 cal yr BP a 'hollow and hummock' micro topography developed at the peat surface, resulting in the presence of a mixture of wetter and drier species in the macrobotanical record. After ca. 4100 cal yr BP, the wet species disappear and a generally drier, acidic bog came into existence. A major shift in all the proxy data is observed at ca. 2800 cal yr BP, pointing to wetter and especially windier climatic conditions on the island probably caused by an intensification and/or latitudinal shift of the southern westerly belt. Caused by a stronger wind regime, erosion of the peat surface occurred at that time and a lake was formed in the peat deposits of the crater, which is still present today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells1, 2, 3, 4, 5, but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well-dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mineral component of pelagic sediments recovered from the Indian Ocean provides both a history of eolian deposition related to climatic changes in southern Africa and a record of terrigenous input related to sediment delivery from the Himalayas. A composite Cenozoic dust flux record from four sites in the central Indian Ocean is used to define the evolution of the Kalahari and Namib desert source regions. The overall record of dust input is one of very low flux for much of the Cenozoic indicating a long history of climate stability and regional hyperaridity. The most significant reduction in dust flux occurred near the Paleocene/Eocene boundary and is interpreted as a shift from semiarid climates during the Paleocene to more arid conditions in the early Eocene. Further aridification is recorded as stepwise reductions in the input of dust material which occur from about 35 to 40 Ma, 27 to 32 Ma, and 13 to 15 Ma and correlate to significant enrichments in benthic foraminifer delta18O values. The mineral flux in sediments from the northern Indian Ocean, site 758, records changes in the terrigenous input apparently related to the erosion of the Himalayas and indicates a rapid late Cenozoic uplift history. Three major pulses of increased terrigeneous sediment flux are inferred from the depositional record. The initial increase began at about 9.5 Ma and continued for roughly 1.0 million years. A second pulse with approximately the same magnitude occurred from about 7.0 to 5.6 Ma. The largest pulse of enhanced terrigenous influx occurred during the Pliocene from about 3.9 to 2.0 Ma when average flux values were severalfold greater than at any other time in the Cenozoic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present volume contains the planktological data collected during the expedition of the "Meteor" to the Indian Ocean in 1964/65. It was the main objective of the expedition to study the up- and downwelling conditioned along the western and eastern coasts of the Arabian Sea by the northeastern monsoon. It is from these areas that the greater part of the data here presented was obtained. A few values from the Red Sea have been added. As the title "Planktological-Chemical Data" implies, it was chiefly with the help of chemical methods that the planktological investigations, with the exception of the particle size analysis and phytoplankton counting conducted optically, were carried out. These investigations were above all devoted to a quantitative survey of particulate matter and plankton, the latter being sampled by water-bottle and net. The zooplankton hauls were taken with the Indian Ocean Standard Net according to the international guidelines laid down for the expedition. As a rule, double catches were made at every station, one sample being intended for laboratory analysis at the Indian Ocean Biological Centre in Ernakulam, South India, and the other for the Institut für Meereskunde in Kiel. In addition to determining the standing stock, the production rate of phytoplankton was measured by the 14C method. These experiments were mainly conducted during the latter half of the expedition. The planktological studies primarily covered the euphotic zone, extending into the underlying water layers up to a depth of 600 m. The investigations were above all directed towards ascertaining the quantity of organic substance, formed by primary production, in its relation to environmental conditions and determining whether or not organic substance is actively transported from the surface into the deeper layers by the periodically migration organisms of the deep scattering layers. Depending on the station time available, a few samples could now and then be taken from deeper layers. The present volume of planktological-chemical data addresses itself to all those concerned processing the extensive material collected during the International Indian Ocean Expedition. As a readily accessible work of reference, it hopes to serve as an aid in the evaluation and interpretation of the expedition results. The complementary ecological data such as temperature, salinity, and oxygen content as well as the figures obtained on abundance and distribution in depth of the nutrients essential for primary production may be found in the volume of physical-chemical data published in Series A of the "Meteor"-Forschungsergebnisse No. 2, 1966 (Dietrich et al., 1966).