12 resultados para Incipient Colonies

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pigmy Basin sediments cored in Hole 619 of Deep Sea Drilling Project Leg 96 are silty clays composed, on the average, of < 1% sand, 37% silt, 48% clay, and 14% carbonate minerals. Except for minor grain dissolution in some silt grains, there is no distinctive variation with depth in either composition or texture of the sand- and silt-sized minerals. This suggests a constant source of sediment supply and little diagenetic alteration of these size fractions. Clay minerals are dominated by smectite or, more precisely, montmorillonite. On the average, the clay-sized fraction consists of 48% smectite and mixed layer minerals, 30% illite, and 23% total kaolinite and chlorite. There appears to be a slight decrease in smectite and concomitant increases in other clay minerals with depth. These changes are further substantiated by the variations of ammonium acetate exchangeable K+, Mg2+, and Na+ in bulk samples. Thus, incipient diagenesis of Pigmy Basin sediments is evidenced in the mineralogical and associated chemical characteristics of the clay fractions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of neogenic opaline structures, not previously reported in the literature, as well as other neogenic phases are described from four Oligocene to Pliocene biosiliceous sediment samples from Hole 699A. The possible influence of microbes on the formation or the morphology of some of them is discussed. The samples, which are early Pliocene, early to middle Miocene, and late Oligocene (two) in age, were histologically fixed aboard ship upon retrieval. Investigations of the samples used SEM (with Edax/Tracor) and XRD methods. Diagenesis has affected all four samples, but the most extensive development of neoformed structures occurs in the Miocene and uppermost Oligocene samples, where microbial filaments (0.05 to 10 ?m long), microbial colonies, and siliceous microhemispheroids (0.2 to 0.7 µm diameter) were observed. The latter encrust filaments, diatoms, and detrital grains to varying degrees. Other neoformed structures include (1) flakes formed by coalesced microhemispheroids, some of which are guided by short, stubby filaments, which occur only in the Miocene and uppermost Oligocene samples, and (2) flakes characterized by smooth or microfissured surfaces, which grow on diatom frustules and in pore spaces and have a more widespread distribution. The XRD data indicate possible cristobalite formation in the Miocene and uppermost Oligocene samples; we believe that the neoformed opaline structures (encrusted filaments and microhemispheroids) may represent an early phase of opal-CT. The timing of neoformation of most of these features appears to have been fairly recent, continuing even at the time of sampling. There appears to be no direct correlation of this incipient, lower Miocene-uppermost Oligocene diagenetic layer and the pore-water chemistry profiles; a massive increase in shear strength in these sediments, however, may indicate some cementation. Smectite was identified by XRD as the most prominent clay mineral in these generally clay-poor sediments. Honeycombed minerals with filamentous edges, which could correspond to smectite, were observed with SEM in the pore spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of desiccation on photochemical processes and nitrogenase activity were evaluated in Nostoc commune s.l. colonies in situ from a wet thufur meadow at Petuniabukta, Billefjorden, Central Svalbard, during the 2009 arctic summer. The colonies were collected in the fully hydrated state, and were subjected to slow desiccation at ambient temperatures (5 - 8°C) and low light (30 - 80 µmol/m**2/s). For each colony the weight, area, photochemical performance, and nitrogenase activity were determined at the beginning, as well as on every day during the first four days of the experiment; thereafter, on every second day until desiccation was complete. The photochemical performance was evaluated from variable chlorophyll fluorescence parameters (FV/FM, Phi(PSII) , qP, and NPQ), and the nitrogenase activity was estimated by an acetylene-ethylene reduction assay. A significant decrease in the photochemically active area was recorded from the third day, when the colony had lost approximately 40% of its original weight indicating some changes in the extracellular matrix, and stopped on the 14th to 18th day. No effects of the desiccation on the main photochemical parameters (FV/FM, Phi(PSII), qP) were observed up to the sixth to eighth days of desiccation. Slightly lower values of FV/FM and Phi(PSII) recorded in fully-hydrated colonies could be caused by impaired diffusion of CO2 into cells. The steep reduction of photochemical activity occurred between the eighth and tenth day of the experiment, when the colony had lost approximately 80% of its fully-hydrated weight. The nitrogenase activity was highest on the first day, probably due to improved diffusion of N2 into cells, then declined, but was detectable until the sixth day of the experiment. Since Nostoc commune s.l. colonies were capable of photosynthesis and nitrogen fixation to the level of ca. 60% of its fully-hydrated weight, even partly-hydrated colonies contribute substantially to carbon and nitrogen cycling in the High Arctic wet meadow tundra ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breeding distribution of the Adelie penguin, Pygoscelis adeliae, was surveyed with Landsat-7 Enhanced Thematic Mapper Plus (ETM+) data along the coastline of Antarctica, an area covering approximately 330° of longitude. An algorithm was designed to minimize the radiometric contribution from exogenous sources and to retrieve Adelie penguin colony location and spatial extent from the ETM+ data. In all, 9143 individual pixels were classified as belonging to an Adelie penguin colony class out of the entire dataset of 195 ETM+ scenes, where the dimension of each pixel is 30 m by 30 m, and each scene is approximately 180 km by 180 km. Pixel clustering identified a total of 187 individual Adelie penguin colonies, ranging in size from a single pixel (900 m**2) to a maximum of 875 pixels (0.788 km**2). Colony retrievals have a very low error of commission, on the order of 1 percent or less, and the error of omission was estimated to be 2.9 percent by population based on comparisons with direct observations from surveys across east Antarctica. Thus, the Landsat retrievals can successfully locate Adelie penguin colonies that account for ~97 percent of a regional population. Geographic coordinates and the spatial extent of each colony retrieved from the Landsat data are available publically. Regional analysis found several areas where the Landsat retrievals suggest populations that are significantly larger than published estimates. Six Adelie penguin colonies were found that are believed to be unreported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although long-range atmospheric transport has been described as the predominant mechanism for exposing polar regions to persistent organic pollutants (POPs), recent studies have suggested that bird activity can also contribute substantially to contaminant levels in some environments. However, because the species so far reported have all been migratory, it has not been demonstrated conclusively whether locally elevated contamination represents transport from lower latitudes by the migrating birds or, alternatively, redistribution and concentration of contaminants that were already present in the high-latitude environments. The present study demonstrates, for the first time, that several POPs are present in elevated concentrations in an environment frequented by a non-migratory species (Adelie penguins) that spends its entire life in the Antarctic. Levels of POPs, such as p,p'-DDE, hexachlorobenzene (HCB), chlordanes (CHLs) and polychlorinated biphenyls (PCBs), were 10 to 100-fold higher in soil samples from penguin colonies than from reference areas. This significant difference is likely related to local penguin activity, such as a higher abundance of guano and the presence of bird carcasses. This hypothesis is also supported by a higher percentage of persistent congeners (PCB 99, 118, 138 and 153) in the soil from the colonies compared to the reference areas. This profile of PCB congeners closely matched profiles seen in penguin eggs or penguin blood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the surface ocean equilibrates with rising atmospheric CO2, the pH of surface seawater is decreasing with potentially negative impacts on coral calcification. A critical question is whether corals will be able to adapt or acclimate to these changes in seawater chemistry. We use high precision CT scanning of skeletal cores of Porites astreoides, an important Caribbean reef-building coral, to show that calcification rates decrease significantly along a natural gradient in pH and aragonite saturation (Omega arag). This decrease is accompanied by an increase in skeletal erosion and predation by boring organisms. The degree of sensitivity to reduced ?arag measured on our field corals is consistent with that exhibited by the same species in laboratory CO2 manipulation experiments. We conclude that the Porites corals at our field site were not able to acclimatize enough to prevent the impacts of local ocean acidification on their skeletal growth and development, despite spending their entire lifespan in low pH, low Omega arag seawater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carbonate chemistry of seawater is usually not considered to be an important factor influencing calcium-carbonate-precipitation by corals because surface seawater is supersaturated with respect to aragonite. Recent reports, however, suggest that it could play a major role in the evolution and biogeography of recent corals. We investigated the calcification rates of five colonies of the zooxanthellate coral Stylophora pistillata in synthetic seawater using the alkalinity anomaly technique. Changes in aragonite saturation from 98% to 585% were obtained by manipulating the calcium concentration. The results show a nonlinear increase in calcification rate as a function of aragonite saturation level. Calcification increases nearly 3-fold when aragonite saturation increases from 98% to 390%, i.e., close to the typical present saturation state of tropical seawater. There is no further increase of calcification at saturation values above this threshold. Preliminary data suggest that another coral species, Acropora sp., displays a similar behaviour. These experimental results suggest: (1) that the rate of calcification does not change significantly within the range of saturation levels corresponding to the last glacial-interglacial cycle, and (2) that it may decrease significantly in the future as a result of the decrease in the saturation level due to anthropogenic release of CO2 into the atmosphere. Experimental studies that control environmental conditions and seawater composition provide unique opportunities to unravel the response of corals to global environmental changes.