8 resultados para In-cylinder Pressure Analysis
em Publishing Network for Geoscientific
Resumo:
Canonical correspondence analysis has been used to analyze and to visualize the relationships between the main species and selected environmental variables in a study of diatoms from surface sediment samples in Chinese inshore waters. The result shows that the diatom distribution in Chinese inshore waters is closely correlated with the environmental variables and that the measured environmental variables account for the major changes of the diatom composition. Winter sea-surface temperature (WST), winter sea-surface salinity (WSS), water depth and summer sea-surface salinity (SSS) play an important role for the diatom distribution. Among the environmental factors, winter sea-surface temperature is the most important, controlling the distribution of diatoms in the surface sediments in Chinese inshore waters, and therefore, it may be potentially reconstructed in palaeoceanographic studies. Three diatom assemblages are distinguished, representing environments with different hydrological characteristics. The temperate-water diatom assemblage may be used as an indicator of the coastal circulation system of Bohai Sea and Yellow Sea. While the warm-temperate water diatom assemblage is closely related to Shanghai-Zhejiang-Fujian coastal currents and Northern Bay coastal currents of South China Sea. The deep water diatom assemblage is a response to that the waters are less controlled by coastal currents, but are more influenced by open sea currents, such as Kuroshio.
Resumo:
The distribution of ice rafted debris (IRD) is an important parameter in glaciomarine sediments. A simple method is presented allowing the determination of the IRD-content by counting the gravel fraction of the X-radiographs which are generally taken during sarnpling. In comparison with sieve analyses corresponding values are obtained by both methods. However, more information can be made available in a shorter time by this method.
Resumo:
A pressure core barrel (PCB), developed by the Deep Sea Drilling Project, was used successfully to recover, at in situ pressure, sediments of the Blake Outer Ridge, offshore the southeastern United States. The PCB is a unique, wire-line tool, 10.4 m long, capable of recovering 5.8 m of core (5.8 cm in diameter), maintained at or below in situ pressures of 34.4 million Pascals (MPa), and 1.8 m of unpressurized core (5.8 cm in diameter). All excess internal pressure above the operating pressure of 34.4 MPa is automatically vented off as the barrel is retrieved. The PCB was deployed five times at DSDP Site 533 where geophysical evidence suggests the presence of gas hydrates in the upper 600 m of sediment. Three cores were obtained holding average in situ pressures of 30 MPa. Two other cores did not maintain in situ pressures. Three of the five cores were intermittently degassed at varying intervals of time, and portions of the vented gas were collected for analysis. Pressure decline followed paths indicative of gas hydrates and/or dissolved gas. The released gas was dominantly methane (usually greater than 90%), along with higher molecular-weight hydrocarbon gases and carbon dioxide. During degassing the ratio of methane to ethane did not vary significantly. On the other hand, concentrations of higher molecular-weight hydrocarbon gases increased, as did carbon dioxide concentrations. The results from the PCB experiments provide tentative but equivocal evidence for the presence of .gas hydrates at Site 533. The amount of gas hydrate indicated is small. Nevertheless, this work represents the first successful study of marine gas hydrates utilizing the PCB.
Resumo:
Microorganisms play an important role in the transformation of material within the earth's crust. The storage of CO2 could affect the composition of inorganic and organic components in the reservoir, consequently influencing microbial activities. To study the microbial induced processes together with geochemical, petrophysical and mineralogical changes, occurring during CO2 storage, long-term laboratory experiments under simulated reservoir P-T conditions were carried out. Clean inner core sections, obtained from the reservoir region at the CO2 storage site in Ketzin (Germany) from a depth of about 650 m, were incubated in high pressure vessels together with sterile synthetic formation brine under in situ P-T conditions of 5.5 MPa and 40°C. A 16S rDNA based fingerprinting method was used to identify the dominant species in DNA extracts of pristine sandstone samples. Members of the alpha- and beta-subdivisions of Proteobacteria and the Actinobacteria were identified. So far sequences belonging to facultative anaerobic, chemoheterotrophic bacteria (Burkholderia fungorum, Agrobacterium tumefaciens) gaining their energy from the oxidation of organic molecules and a genus also capable of chemolithoautotrophic growth (Hydrogenophaga) was identified. During CO2 incubation minor changes in the microbial community composition were observed. The majority of microbes were able to adapt to the changed conditions. During CO2 exposure increased concentrations of Ca**2+, K**+, Mg**2+ and SO4**2- were observed. Partially, concentration rises are (i) due to equilibration between rock pore water and synthetic brine, and (ii) between rock and brine, and are thus independent on CO2 exposure. However, observed concentrations of Ca**2+, K**+, Mg**2+ are even higher than in the original reservoir fluid and therefore indicate mineral dissolution due to CO2 exposure.
Resumo:
Changes in phenotypic traits, such as mollusc shells, are indicative of variations in selective pressure along environmental gradients. Recently, increased sea surface temperature (SST) and ocean acidification (OA) due to increased levels of carbon dioxide in the seawater have been described as selective agents that may affect the biological processes underlying shell formation in calcifying marine organisms. The benthic snail Concholepas concholepas (Muricidae) is widely distributed along the Chilean coast, and so is naturally exposed to a strong physical-chemical latitudinal gradient. In this study, based on elliptical Fourier analysis, we assess changes in shell morphology (outlines analysis) in juvenile C. concholepas collected at northern (23°S), central (33°S) and southern (39°S) locations off the Chilean coast. Shell morphology of individuals collected in northern and central regions correspond to extreme morphotypes, which is in agreement with both the observed regional differences in the shell apex outlines, the high reclassification success of individuals (discriminant function analysis) collected in these regions, and the scaling relationship in shell weight variability among regions. However, these extreme morphotypes showed similar patterns of mineralization of calcium carbonate forms (calcite and aragonite). Geographical variability in shell shape of C. concholepas described by discriminant functions was partially explained by environmental variables (pCO2, SST). This suggests the influence of corrosive waters, such as upwelling and freshwaters penetrating into the coastal ocean, upon spatial variation in shell morphology. Changes in the proportion of calcium carbonate forms precipitated by C. concholepas across their shells and its susceptibility to corrosive coastal waters are discussed.
Resumo:
This work aimed to explore evaluated the effects of the increased of hydrostatic pressure on a defined bacterial community on aggregates formed from an axenic culture of marine diatoms by simulating sedimentation to the deep sea by increase of hydrostatic pressure up to 30 bar (equivalent to 3000 m water depth) against control at ambient surface pressure. Our hypothesis was that microbial colonization and community composition and thus microbial OM turnover is greatly affected by changes in hydrostatic pressure during sinking to the deep ocean.
Resumo:
At Sleipner, CO2 is being separated from natural gas and injected into an underground saline aquifer for environmental purposes. Uncertainty in the aquifer temperature leads to uncertainty in the in situ density of CO2. In this study, gravity measurements were made over the injection site in 2002 and 2005 on top of 30 concrete benchmarks on the seafloor in order to constrain the in situ CO2 density. The gravity measurements have a repeatability of 4.3 µGal for 2003 and 3.5 µGal for 2005. The resulting time-lapse uncertainty is 5.3 µGal. Unexpected benchmark motions due to local sediment scouring contribute to the uncertainty. Forward gravity models are calculated based on both 3D seismic data and reservoir simulation models. The time-lapse gravity observations best fit a high temperature forward model based on the time-lapse 3D seismics, suggesting that the average in situ CO2 density is about to 530kg/m**3. Uncertainty in determining the average density is estimated to be ±65 kg/m**3 (95% confidence), however, this does not include uncertainties in the modeling. Additional seismic surveys and future gravity measurements will put better constraints on the CO2 density and continue to map out the CO2 flow.