13 resultados para In-between
em Publishing Network for Geoscientific
Resumo:
Concentrations of dissolved organic carbon (DOC) and nitrogen (DON) were measured during early austral Spring 1992 at a number of stations along the 6°W meridian between 47° and 60°S. This included the Polar Front in the north, the zone of melting sea-ice in the south, and waters of the Antarctic Circumpolar Current in between. Concentrations of DOC were low in deep water (34-38 ?M) with generally similar or slightly higher values in the surface mixed layer (38-55 ?M). DOC:DON ratios are wider in surface water than in deep water, i.e. surface accumulations contain relatively C-rich dissolved organic matter. The highly variable distribution of the surface DOC was not related to hydrographic or biotic features (fronts, plankton development) indicating the lability and transient occurrence of this material. Growth rates of bacteria were determined in subsamples from 51 0.8-?m-filtered batches of seawater incubated in the dark at in-situ temperature. Thymidine and leucine uptake and bacterial biomass change as well as changes in dissolved organic carbon in the batches, and oxygen consumption in parallel incubations correlated linearly over 2 weeks of incubation which allowed extrapolation to in-situ conditions. Bacterial growth in these experiments depended strongly on the amount of initial DOC. Growth in water from greater depth (1000 m) containing 38 ?M DOC was minimal, as were DOC-decrease and oxygen consumption. Higher rates were observed in surface water slightly enriched with DOC, and highest rates in surface water amended with DOC-rich melted sea ice. Bacterial growth efficiencies (biomass C-increase vs DOC consumed) were about 30%. The experiments showed that at least 40-60% of the DOC in excess of deep water concentrations was available to bacteria.
Resumo:
We investigated the local bird community in Central Sulawesi (Indonesia), with focus on insectivorous species in the agroforestry landscapes adjacent to the Lore Lindu National Park. All study sites were situated at the northern tip of Napu Valley in Central Sulawesi, Indonesia. After an initial mapping of the study area, we selected 15 smallholder cacao plantations as sites for our study in March 2010. These sides were mainly used for bird and bat exclosure experiments. All sited were situated along a local gradient (shade availability on each plantation) and a landscape gradient (distance to primary forest), which were independent from each other. In September 2010 and from February until June 2011, we assessed the bird community on our 15 study sites using monthly point count and mist netting sampling. Point count (20 minutes between 07 am and 10 am and in between the net checking hours) and mist netting surveys (12 hours, between 05:30 am and 17:30 pm) were conducted simultaneously but only once per month on each study site, to avoid habituation of the local bird community to our surveys. Further, point counts were conducted at least 100 m apart from the mist netting sites, to avoid potential disturbance between the two methods. We discarded all observations beyond 50 m (including those individuals that flew over the canopy) from the statistical analysis, as well as recaptures of individuals within identical mist netting rounds.
Resumo:
In the last 20 years directed shark and ray fishery has increased alarmingly everywhere in the world. For most species though, no data on growth rate, mortality, fecundity and other life history aspects exist as of now and management of the fishery is therefore insufficient. Also there still exist methodological difficulties in the age determination of elasmobranchs fishes, a fact which complicates the investigation of growth parameters. This study tried to identify the best ageing methods and estimate growth parameters for ten skate species of the genus Bathyraja, all occurring in the southwest Atlantic in depths of 50m and more. 720 samples were collected on board of argentine research vessels in between 2003 and 2005. Crystal violet and a new staining method using potassium permanganate, both applied on sagittal sections of vertebral centra, proved to be most effective in enhancing the banding pattern in most of the species. Thorns were also tested and readings were consistent with the ones made on vertebral sections. Growth parameters could be derived for six species and for the other four estimates could be made. Growth rate as well as infinite length varied between species, with those attaining bigger sizes having lower growth rates. No latitudinal differences in growth rate could be detected but a comparison with samples from other studies showed that total lengths were always reported to be higher around the Malvinas Islands.
Resumo:
New surveys were completed and data from the field sheets were kindly furnished by the U. S. Coast and Geodetic Survey to the Woods Hole Oceanographic Institution for use in dredging and coring operations. This field work, first reported in 1936, was continued from time to time until 1941 as new soundings became available. Rock dredging and coring has been carried out in every major canyon on the slope from Corsair Canyon at the tip of Georges Bank to Norfolk Canyon off the entrance to the Chesapeake. Numerous cores have also been taken from the areas in between; and while the whole slope from Georges to the Chesapeake has not been covered, it is believed that no significant areas have been missed. In the following report the tows and cores will be described by areas from Georges Bank southwards, as the same region was revisited in successive years. The various samples, however, will be referred to by number followed by the year in which they were taken. The material is in storage in the Woods Hole Oceanographic Institution and in the Museum of Comparative Zoology at Harvard University.
Resumo:
The upper sections of Deep Sea Drilling Project Sites 576 (32°21.4'N, 164°16.5'E) and 578 (33°55.6'N, 151°37.7'E) both have stable detrital remanence that can be correlated with the standard reversal stratigraphy. Site 576 contains all reversals above the base of the Gilbert Epoch (5 m.y.) at about 25 m, whereas Site 578 contains a remarkable section of about 60 reversals extending to Anomaly 5B (15 m.y.) at about 150 m sub-bottom depth. In both cases, the paleomagnetic stratigraphy breaks down when accumulation rates drop below 2 m/m.y. At both sites, authigenic manganiferous clays deposited from 70 to 16 m.y. ago accumulated at about 0.4 m/m.y. Similarly, at both sites, the Pleistocene pulse of eolian debris increased accumulation rates by about 6 m/m.y.**2. From 16 to 2 m.y. ago, however, sediment accumulated at Site 578 about five times as rapidly as at Site 576, apparently because of augmented input to the western site by bottom currents.
Resumo:
Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea and contribute substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem when inorganic nitrogen concentration in summer is low. Thus, it is of ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO2) concentrations and what consequences there might arise for cycling of organic matter in the Baltic Sea. Here, we determined carbon (C) and dinitrogen (N2) fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover in batch cultures of the heterocystous cyanobacterium Nodularia spumigena under low (median 315 µatm), mid (median 353 µatm), and high (median 548 µatm) CO2 concentrations. Our results demonstrate an overall stimulating effect of rising pCO2 on C and N2 fixation, as well as on cell growth. An increase in pCO2 during incubation days 0 to 9 resulted in an elevation in growth rate by 84 ± 38% (low vs. high pCO2) and 40 ± 25% (mid vs. high pCO2), as well as in N2 fixation by 93 ± 35% and 38 ± 1%, respectively. C uptake rates showed high standard deviations within treatments and in between sampling days. Nevertheless, C fixation in the high pCO2 treatment was elevated compared to the other two treatments by 97% (high vs. low) and 44% (high vs. mid) at day 0 and day 3, but this effect diminished afterwards. Additionally, elevation in carbon to nitrogen and nitrogen to phosphorus ratios of the particulate biomass formed (POC : POP and PON : POP) was observed at high pCO2. Our findings suggest that rising pCO2 stimulates the growth of heterocystous diazotrophic cyanobacteria, in a similar way as reported for the non-heterocystous diazotroph Trichodesmium. Implications for biogeochemical cycling and food web dynamics, as well as ecological and socio-economical aspects in the Baltic Sea are discussed.
Resumo:
A combination of changes in the species composition of the radiolarian populations, and in the sediment chemical composition (content and mass accumulation rates of carbonate, organic carbon, and selected major and trace elements, with special attention paid to Ba) is used to reconstruct the variations in upwelling activity over the last 250 kyr in the Socotra gyre area (Somali-Socotra upwelling system, NW Indian Ocean). In the Socotra gyre (Core MD 962073 at 10°N), the variations in upwelling intensity are reconstructed by the upwelling radiolarian index (URI) while the thermocline/surface radiolarian index (TSRI) testifies to productivity variations during non-upwelling intervals. Despite an origin related both to marine and terrigenous inputs, the geochemical records of organic carbon, silica, and trace elements (Ba, P, Cu, and Zn) normalized to Al are controlled by the variations in surface paleoproductivity. The data indicate a continuous increase in upwelling intensity during the last 250 kyr with a maximum activity within the MIS 3, while high productivity periods in between the upwelling seasons occurred both during glacial and interglacial intervals. A comparison of our data with published observations from another gyre of the Somalian upwelling area located at 5°N in the Somali gyre area shows differences regarding periods of upwelling activity and their geochemical imprint. Three hypotheses are proposed to explain these differences: (1) changes in the planktonic community, resulting in more silica-rich deposits in the Socotra gyre, and more carbonate-rich deposits in the Somali gyre, that are controlled by differences in the source water of the upwelling; (2) a more important terrigenous input in the southern gyre; and (3) a different location of the sites relative to the geographic distribution of the upwelling gyres and hydrologic fronts.
Resumo:
The geometry of the Tonga Arc implies that it has rotated approximately 17° clockwise away from the Lau Ridge as the Lau Basin formed in between. Questions have arisen about the timing of the opening, whether the arc behaved rigidly, and whether the opening occurred instead from motion of the Lau Ridge, the remanent arc. We undertook to address these questions by taking paleomagnetic samples from sediment cores drilled on the Tonga Arc at Sites 840 and 841, orienting the samples in azimuth, and comparing the paleodeclinations to expected directions. Advanced hydraulic piston corer (APC) cores from Holes 840C and 841A were oriented during drilling with a tool based on a magnetic compass and attached to the core barrel. Samples from Hole 841B were drilled with a rotary core barrel (RCB) and therefore are azimuthally unoriented. They were oriented by identifying faults and dipping beds in the core and aligning them with the same features in the Formation MicroScanner (FMS) wireline logs, which were themselves oriented with a three-axis magnetometer in the FMS tool. The best results came from the APC cores, which yielded a mean pole at -69.0°S, 112.2°E for an age of 4 Ma. This pole implies a declination anomaly of 20.8° ± 12.6° (95% confidence limit), which appears to have occurred by tectonic rotation of the Tonga Arc. This value is almost exactly that expected from the geometry of the arc and implies that it did indeed rotate clockwise as a rigid body. The large uncertainty in azimuth results from core orientation errors, which have an average standard deviation of 18.6°. The youngest cores used to calculate the APC pole contain sediments deposited during Subchron 2A (2.48-3.40 Ma), and their declinations are indistinguishable from the others. This observation suggests that most of the rotation occurred after their deposition; this conclusion must be treated with caution, however, because of the large azimuthal orientation errors. Poles from late and early Miocene sediments of Hole 841B are more difficult to interpret. Samples from this hole are mostly normal in polarity, fail a reversal test, and yield poles that suggest that the normal-polarity directions may be a recent overprint. Late Miocene reversed-polarity samples may be unaffected by this overprint; if so, they imply a declination anomaly of 51.1° ± 11.5°. This observation may indicate that, for older sediments, Tonga forearc rotations are larger than expected.
Resumo:
The evolution of planktonic foraminifera during the Late Cretaceous is marked in the Santonian by the disappearance of complex morphotypes (the marginotruncanids), and the contemporary increasing importance and diversification of another group of complex taxa, the globotruncanids. Upper Turonian to lower Campanian planktonic foraminiferal assemblages from Holes 762C and 763B (Ocean Drilling Program, Leg 122, Exmouth Plateau, 47°S palaeolatitude) were studied in detail to evaluate the compositional variations at the genus and species level based on the assumption that, in the Cretaceous oceans as in the modern, any faunal change was associated with changes in the characteristics and the degree of stability of the oceanic surface waters. Three major groups were recognised based on gross morphology, and following the assumption that Cretaceous planktonic foraminifera, although extinct, had life-history strategies comparable to those of modern planktonics: 1 - r-selected opportunists; 2 - k-selected specialists; 3 - r/k intermediate morphotypes which include all genera that display a range of trophic strategies in-between opportunist and specialist taxa. Although planktonic foraminiferal assemblages are characterised by a progressive appearance of complex taxa, this trend is discontinuous. Variation in number of species and specimens within genera has allowed recognition of five discrete intervals each of them reflecting different oceanic conditions based on fluctuations in diversity and abundance of the major morphotypes. Planktonic forms show cyclical fluctuations in diversity and abundance of cold (r-strategists) and warm taxa (k-strategists), perhaps representing alternating phases of unstable conditions (suggesting a weakly stratified upper water column in a mesotrophic environment), and well-stratified surface and near-surface waters (indicating a more oligotrophic environment). Interval 1, middle Turonian to early Coniacian in age, is dominated by the r/k intermediate morphotypes which alternate with r-strategists. These cyclical alternations are used to identify three additional subintervals. Interval 2, aged middle to late Coniacian, is characterised by the increasing number of species and relative abundance of k-strategists. After this maximum diversification the k-strategists show a progressive decrease reaching a minimum value in Interval 3 (early to late Santonian), which corresponds to the extinction of the genus Marginotruncana. In the Interval 4, latest Santonian in age, the k-strategists, represented mainly by the genera Globotruncana, increase again in diversity and abundance. The last Interval 5 (early Campanian) is dominated by juvenile globotruncanids and r-strategists which fluctuate in opposite phase. The positive peak (Interval 2) related to the maximum diversification of warm taxa (k-strategists) in the Coniacian seems to correspond to a warmer episode. It is followed by a marked decrease in the relative abundance of warm taxa (k-strategists crisis) with a minimum in the late Santonian (Interval 3), reflecting a decrease in temperature. Detailed analysis of faunal variations allows the Santonian faunal turnover to be ascribed to a cooling event strong enough to cause the extinction of the marginotruncanids.
Resumo:
We investigate the mechanics of slope failures on the Nankai accretionary complex offshore Japan in the vicinity of a major out-of-sequence thrust fault (termed the "megasplay"). Incorporating laboratory-measured shear strength of slope sediments sampled during Integrated Ocean Drilling Project (IODP) Expeditions 315 and 316 with local seafloor slope angles from bathymetric data and constraints on in-situ effective stress conditions from drilling, we find that slopes in the study area are stable and submarine landslides are not expected to occur under static conditions. In order to assess the possibility of slope failure triggered by coseismic rupture of the megasplay fault, we use empirical relations for strong ground motion attenuation from earthquakes with Mw 6-9. We find that the slope sediments should be stable based on computations from one model, developed from a catalog of worldwide subduction zone earthquakes (Youngs et al., 1997, doi:10.1785/gssrl.68.1.58). However, using a different model developed primarily from a catalog of crustal earthquakes in Japan (Kanno et al., 2006, doi:10.1785/0120050138), we find that slopes should be unstable for earthquakes 8 <= Mw <= 9, and possibly unstable for events with 6 <= Mw < 8, depending on the proximity of rupture to the seafloor. Considering limitations of the models and geologic observations of slope failure recurrence, the true slope stability is likely to be in between the predictions of the two models, and we suggest that it may be modulated by long-term pore pressure fluctuations.
Resumo:
The response of natural CH4 sources to climate changes will be an important factor to consider as concentrations of this potent greenhouse gas continue to increase. Polar ice cores provide the means to assess this sensitivity in the past and have shown a close connection between CH4 levels and northern hemisphere temperature variability over the last glacial cycle. However, the contribution of the various CH4 sources and sinks to these changes is still a matter of debate. Contemporaneous stable CH4 isotope records in ice cores provide additional boundary conditions for assessing changes in the CH4 sources and sinks. Here we present new ice core CH4 isotope data covering the last 160,000 years, showing a clear decoupling between CH4 loading and carbon isotopic variations over most of the record. We suggest that d13CH4 variations were not dominated by a change in the source mix but rather by climate- and CO2-related ecosystem control on the isotopic composition of the methane precursor material, especially in seasonally inundated wetlands in the tropics. In contrast, relatively stable d13CH4 intervals occurred during large CH4 loading changes concurrently with past climate changes implying that most CH4 sources (most notably tropical wetlands) responded simultaneously.
Resumo:
The oxygen isotopes ratios of benthic foraminifera and detailed radiocarbon ages of the organic matter of an over 15 m long sediment core from the outer Niger delta allow us to date the oxygen isotope stage boundaries 1/2 to 11500 (+/- 650) years BP, 2/3 to approximately 23000 (+/- 2000) years BP. The composition of the predominantly terrigenous clays and accessory pelagic fossils reflects the evolution of the climate over the southwestern Sahel zone and the response of the Eastern Tropical Atlantic to these climatic fluctuations during the Late Quaternary. The dilution of the pelagic fossil concentrations by the terrigenous material and the oxygen isotopes ratios of planktonic foraminifera indicate large fluctuations in the freshwater discharge from the Niger, with high precipitations over the drainage area of this river from 4500 (+/- 300) to 11500 (+/- 650) years BP and from 11800 (+(- 600) to 13000 (+/- 600) years BP while the time intervals in between were as dry as today. Relative increase of kaolinite during wet phases and the association of smectite, chlorite and attapulgite during dry ones characterize the response of the weathering in the Niger drainage basins to the climatic fluctuations. The occurrence of 10-14 A mixed-layers prior to 26000 years BP is correlated with moderate alteration of the crystalline substratum outcrops from the middle-lower part of the Niger Basin. High quartz concentrations are particularly typical for the transition between oxygen isotope stages 1 and 2 at the inception of heavy precipitations in the southern Sahel zone. Sedimentation rates were quite constant, 30-35 cm/1000 years; they became unusually large at the beginning of the Holocene from 10900 (+/- 650) to 11500 (+/- 650) years BP where they reached more than 600 cm/1000 years. Bottom waters around 1100 m depth in the Gulf of Guinea responded to changes in paleo-oceanography of the entire Atlantic Ocean as well as to local influences. Abnormal carbon isotopes ratios and the drastic changes from a highly diversified fauna (during stages 2 and 3. and during the last part of stage 1 after approx. 7000 years BP) to a poorly diversified fauna in the intervenin time span point to the development of a local benthic environment which cannot easily be compared with the corresponding continental and slope environments of the entire Atlantic Ocean.