2 resultados para Image Interpretation
em Publishing Network for Geoscientific
Resumo:
With full-waveform (FWF) lidar systems becoming increasingly available from different commercial manufacturers, the possibility for extracting physical parameters of the scanned surfaces in an area-wide sense, as addendum to their geometric representation, has risen as well. The mentioned FWF systems digitize the temporal profiles of the transmitted laser pulse and of its backscattered echoes, allowing for a reliable determination of the target distance to the instrument and of physical target quantities by means of radiometric calibration, one of such quantities being the diffuse Lambertian reflectance. The delineation of glaciers is a time-consuming task, commonly performed manually by experts and involving field trips as well as image interpretation of orthophotos, digital terrain models and shaded reliefs. In this study, the diffuse Lambertian reflectance was compared to the glacier outlines mapped by experts. We start the presentation with the workflow for analysis of FWF data, their direct georeferencing and the calculation of the diffuse Lambertian reflectance by radiometric calibration; this workflow is illustrated for a large FWF lidar campaign in the Ötztal Alps (Tyrol, Austria), operated with an Optech ALTM 3100 system. The geometric performance of the presented procedure was evaluated by means of a relative and an absolute accuracy assessment using strip differences and orthophotos, resp. The diffuse Lambertian reflectance was evaluated at two rock glaciers within the mentioned lidar campaign. This feature showed good performance for the delineation of the rock glacier boundaries, especially at their lower parts.
Resumo:
The study of the Neogene (Miocene to Holocene) stratigraphic record on the glaciated Atlantic margin of NW Europe has, to date, largely been undertaken on an ad-hoc basis. Whereas a systematic approach to understanding the stratigraphic development of Palaeogene and older strata has been undertaken in areas such as the North Sea, West of Shetland and Norway, the problem of establishing a Neogene framework has been only partly addressed by academia and the oil industry. In most cases where a Neogene stratigraphy has been constructed, this has been largely in response to problem solving and risk assessment in a restricted area. Nevertheless, in the past few years it has become increasingly apparent that there is a common history in the Neogene development of the passive Atlantic margin of NW Europe, between mid-Norway and SW Ireland. The inspection and interpretation of an extensive geophysical and geological database has identified several regionally significant and correlatable unconformities along this continental margin. Thus, a regional approach to the stratigraphical development of the Neogene succession on the glaciated European Atlantic margin is undertaken in this volume.