85 resultados para Illinois revised statutes
em Publishing Network for Geoscientific
Resumo:
The magnetic polarity stratigraphy at Site 907 obtained from the shipboard pass-through magnetometer and from discrete samples is readily interpretable back to the onset of the Gilbert Chron (5.89 Ma). From this level to the base of the section at ~14 Ma, the interpretation is corroborated by silicoflagellate datums with predictable correlation to polarity chrons. The resulting magnetostratigraphic interpretation differs from those proposed in the Leg 151 (Hole 907A) and 162 (Holes 907B and 907C) Initial Reports volumes. An important hiatus in the 7-10 Ma interval at Site 907 caused sedimentation to slow or cease for ~2.7 m.y. We have revised the shipboard correlation among the three holes at Site 907, resulting in a new composite section splice and recalculation of composite depths. For Site 985, magnetostratigraphic interpretation is possible down to ~150 meters below seafloor (mbsf) (C3An/C3Ar) at ~6 Ma. There are no useful biostratigraphic datums from Site 985 to support this interpretation; however, the interpretation is supported by the correlation of Sites 985 and 907 using natural gamma data from the shipboard multisensor track. Below ~150 mbsf at Site 985, drilling-related deformation at the onset of extended core barrel drilling precluded magnetostratigraphic interpretation.
Resumo:
The dataset contains the revised age models and foraminiferal records obtained for the Last Interglacial period in six marine sediment cores: - the Southern Ocean core MD02-2488 (age model, sea surface temperatures, benthic d18O and d13C for the period 136-108 ka), - the North Atlantic core MD95-2042 (age model, planktic d18O, benthic d18O and d13C for the period 135-110 ka), - the North Atlantic core ODP 980 (age model, planktic d18O, sea surface temperatures, seawater d18O, benthic d18O and d13C, ice-rafted detritus for the period 135-110 ka), - the North Atlantic core CH69-K09 (age model, planktic d18O, sea surface temperatures, seawater d18O, benthic d18O and d13C, ice-rafted detritus for the period 135-110 ka), - the Norwegian Sea core MD95-2010 (age model, percentage of Neogloboquadrina pachyderma sinistral, sea surface temperatures, benthic d18O, ice-rafted detritus for the period 134-110 ka), - the Labrador Sea core EW9302-JPC2 (age model, percentage of Neogloboquadrina pachyderma sinistral, sea surface temperatures, benthic d18O for the period 134-110 ka).
Resumo:
The distinctly cyclic sediments recovered during ODP Leg 154 played an important role in constructing the astronomical time scale and associated astro(bio)chronology for the Miocene, and in deciphering ocean-climate history. The accuracy of the timescale critically depends on the reliability of the shipboard splice used for the tuning and on the tuning itself. New high-resolution colour- and magnetic susceptibility core scanning data supplemented with limited XRF-data allow improvement of the stratigraphy. The revised composite record results in an improved astronomical age model for ODP Site 926 between 5 and 14.4 Ma. The new age model is confirmed by results of complex amplitude demodulation of the precession and obliquity related cycle patterns. Different values for tidal dissipation are applied to improve the fit between the sedimentary cycle patterns and the astronomical solution. Due to the improved stratigraphy and tuning, supported by the results of amplitude demodulation, the revised time scale yields more reliable age estimates for planktic foraminiferal and calcareous nannofossil events. The results of this study highlight the importance of stratigraphy for timescale construction.
Resumo:
Integrated Ocean Drilling Program (IODP) Expedition 320 recovered high-quality paleomagnetic records with over 800 dated reversals and decimeter-scale cyclic sediments which provide an outstanding framework to inter-calibrate major fossil groups and refine magnetic polarity chrons for the early Miocene, the entire Oligocene and the late Eocene Epoch. In order to reconstruct the climate history of the Equatorial Pacific one of the major objectives of the Pacific Equatorial Age Transect (PEAT) is the compilation of a Cenozoic Megasplice which integrates all available bio-, chemo-, and magnetostratigraphic data including key records from Ocean Drilling Program (ODP) Leg 199. Here we present extended post-cruise refinements of the shipboard composite depth scales and composite records of IODP Expedition 320 Sites U1331, U1332, U1333, U1334 as well as ODP Leg 199 Sites 1218, 1219 and 1220. The revised composite records were used to perform a site-to-site correlation and integration of Leg 199 and Exp. 320 sites. Based on this decimeter scale correlation a high resolution integrated paleomagnetic and biostratigraphic framework for the Equatorial Pacific is established covering the time from 20 to 40 Ma. This unprecedented sedimentary compendium from the Equatorial Pacific will be the backbone for paleoceanographic reconstructions for the late Paleogene.
Resumo:
We present new revised composite depth scales for Ocean Drilling Program Leg 198 Sites 1209, 1210, and 1211, drilled at Shatsky Rise in the western Pacific Ocean. Reinterpretation of high-resolution physical property data, with the main focus on magnetic susceptibility as the primary parameter for hole-to-hole correlation, revealed that the shipboard composite records had to be revised below 124.87 meters composite depth (mcd) for Site 1209, below 142.45 mcd for Site 1210, and below 88.64 mcd for Site 1211. The revised composite records comprise Paleogene and Cretaceous sediments at all three sites. As a result of the additional adjustments, the revised mcd records of Sites 1209 and 1210 are 13.48 and 2.69 m longer than the original spliced records, respectively. The original splice of Site 1211 has undergone minor adjustments only to match those of Sites 1209 and 1210. Moreover, detailed correlation of sections outside the new spliced records enable samples already taken to be placed into the new revised composite depth scale.
Resumo:
At Ocean Drilling Program (ODP) Site 1090 (subantarctic South Atlantic), benthic foraminiferal stable isotope data (from Cibicidoides and Oridorsalis) span the late Oligocene through early Miocene (~24-16 Ma) at a temporal resolution of ~5 ky. Over the same interval, a magnetic polarity stratigraphy can be unequivocally correlated to the geomagnetic polarity time scale (GPTS), thereby providing direct correlation of the isotope record to the GPTS. In an initial age model, we use the newly derived age of the Oligocene/Miocene (O/M) boundary of 23.0 Ma of Shackleton et al. (2000, doi:10.1130/0091-7613(2000)28<447:ACAFTO>2.0.CO;2), revised to the new astronomical calculation (La2003) of Laskar et al (2004, doi:10.1016/j.icarus.2004.04.005) to recalculate the spline ages of Cande and Kent (1995, doi:10.1029/94JB03098). We then tune the Site 1090 dekta18O record to obliquity using La2003. In this manner, we are able to refine the ages of polarity chrons C7n through C5Cn.1n. The new age model is consistent, within one obliquity cycle, with previously tuned ages for polarity chrons C7n through C6Bn from Shackleton et al. (2000) when rescaled to La2003. The results from Site 1090 provide independent evidence for the revised age of the Oligocene/Miocene boundary of 23.0 Ma. For early Miocene polarity chrons C6AAr through C5Cn, our obliquity-scale age model is the first to allow a direct calibration to the GPTS. The new ages are generally within one obliquity cycle of those obtained by rescaling the Cande and Kent (1995) interpolation using the new age of the O/M boundary (23.0 Ma) and the same middle Miocene control point (14.8 Ma) used by Cande and Kent (1995).
Resumo:
A high-resolution stratigraphy is essential toward deciphering climate variability in detail and understanding causality arguments of events in earth history. Because the highly dynamic middle to late Eocene provides a suitable testing ground for carbon cycle models for a waning warm world, an accurate time scale is needed to decode climate-driving mechanisms. Here we present new results from ODP Site 1260 (Leg 207) which covers a unique expanded middle Eocene section (magnetochrons C18r to C20r, late Lutetian to early Bartonian) of the tropical western Atlantic including the chron C19r transient hyperthermal event and the Middle Eocene Climate Optimum (MECO). To establish a detailed cyclostratigraphy we acquired a distinctive iron intensity records by XRF scanning Site 1260 cores. We revise the shipboard composite section, establish a cyclostratigraphy and use the exceptional eccentricity modulated precession cycles for orbital tuning. The new astrochronology revises the age of magnetic polarity chrons C19n to C20n, validates the position of very long eccentricity minima at 40.2 and 43.0 Ma in the orbital solutions, and extends the Astronomically Tuned Geological Time Scale back to 44 Ma. For the first time the new data provide clear evidence for an orbital pacing of the chron C19r event and a likely involvement of the very long eccentricity cycle contributing to the evolution of the MECO.
Resumo:
This paper contains magnetobiostratigraphic correlation charts for each of the four sites occupied during DSDP Leg 72. Microfossil zonal boundaries and magnetic polarity determinations for Sites 515 through 518 are summarized in Figures 1 through 4, respectively. Our discussion focuses on the correlations derived for the Paleogene and late Cretaceous (Coniacian-Maestrichtian) of Site 516, because of the value of this site as a stratigraphic reference section for the South Atlantic.
Resumo:
The geological map shows the border area between the polyphase (late Mesoproterozoic and Cambrian) deformed Sivorg Terrane and the Kottas Terrane where a pervasive Cambrian tectonometamorphic overprints is lacking. Geological revision mapping was carried out during the Antarctic Expedition 2000/01 of the Alfred Wegener Institute for Polar and Marine Research. Topographic data were obtained through stereoscopic aerial photo interpretation. The photogrammetric photo flights were undertaken in 1986 by the Institut für Angewandte Geodäsie, Frankfurt. Horizontal ground control points required for aerial photo interpretation were determined by means of Doppler satellite observation during the 2nd German Neuschwabenland Expedition 1985/86. Vertical ground control points were taken from unpublished map drafts at 1:100 000 scale by Norsk Polarinstitutt, Oslo. The elevation above mean sea level was transferred to Heimefrontfjella barometrically. For this reason assertions concerning the absolute elevation (referred to sea level) are uncertain. Contours and spot heights presented on the map were obtained from the photogrammetric evaluation of the photography taken in 1986; relative elevation data (height differences) are accurate to approximately ±10 m. Published by Geologisches Institut der RWTH Aachen & Fachbereich Geowissenschaften, Bremen.