5 resultados para IUCN categories and criteria

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HCMR_SES_LAGRANGIAN_GR2_ MICROBIAL PARAMETERS dataset is based on samples collected in the framework of the project SESAME, in the North Aegean Sea during October 2008. The objectives were to measure the standing stocks and calculate the production of the microbial compartment of the food web, describe the vertical distribution pattern and characterize its structure and function through the water column as influenced by the BSW. Heterotrophic bacteria, Synechococcus, Prochlorococcus and Virus abundance: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson). Heterotrophic Nanoflagellate abundance: Subsamples (30-150 ml) were concentrated on 25mm black polycarbonate filters of porosity 0.6?m and stained with DAPI for 10 min (Porter and Feig 1980). Under epifluorescence microscopy heterotrophic nanoflagellates (HNAN) were distinguished using UV and blue excitation and enumerated. Nanoflagellates were classified in size categories and the biovolume was calculated. Ciliate abundance: For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005). Heterotrophic bacteria, Synechococcus, Prochlorococcus bacteria: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson). Abundance data were converted into C biomass using 250 fgC cell-1 (Kana & Glibert 1987) for Synechococcus, 50 fgC cell-1 (Campbell et al. 1994) for Prochlorococcus and 20fgC cell-1 (Lee & Fuhrman 1987) for heterotrophic bacteria. Heterotrophic Nanoflagellate biomass: Subsamples (30-150 ml) were concentrated on 25mm black polycarbonate filters of porosity 0.6µm and stained with DAPI for 10 min (Porter and Feig 1980). Under epifluorescence microscopy heterotrophic nanoflagellates (HNAN) were distinguished using UV and blue excitation and enumerated. Nanoflagellates were classified in size categories and the biovolume was calculated. Abundance data were converted into C biomass using 183 fgC µm**3 (Caron et al. 1995). Ciliate biomass: For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005). Ciliate cell sizes were measured and converted into cell volumes using appropriate geometric formulae using image analysis. For biomass estimation, the conversion factor 190 fgC µm**3 was used (Putt and Stoecker 1989).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HCMR_SES_LAGRANGIAN_GR1_ MICROBIAL PARAMETERS dataset is based on samples collected in the framework of the project SESAME, in the North Aegean Sea during April 2008. The objectives were to measure the standing stocks and calculate the production of the microbial compartment of the food web, describe the vertical distribution pattern and characterize its structure and function through the water column as influenced by the BSW. Heterotrophic bacteria, Synechococcus, Prochlorococcus and Virus abundance: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson). Heterotrophic Nanoflagellate abundance: Subsamples (30-150 ml) were concentrated on 25mm black polycarbonate filters of porosity 0.6µm and stained with DAPI for 10 min (Porter and Feig 1980). Under epifluorescence microscopy heterotrophic nanoflagellates (HNAN) were distinguished using UV and blue excitation and enumerated. Nanoflagellates were classified in size categories and the biovolume was calculated. Ciliate abundance: For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005). Heterotrophic bacteria, Synechococcus, Prochlorococcus biomass: Subsamples for virus, heterotrophic bacteria and cyanobacteria (Synechococcus spp. and Prochlorococcus spp.) counting were analyzed using a FACSCalibur (Becton Dickinson) flow cytometer equipped with a standard laser (488 nm) and filter set and using deionized water as sheath fluid. Fluorescent beads with a diameter of 0.97 µm (Polysciences) were added to each sample as an internal standard, and all parameters were normalized to the beads and expressed as relative units. SYBRGreen I stain (Molecular Probe) was used to stain viral and heterotrophic bacterial DNA. Viruses were counted according to (Brussaard 1984). In order to avoid bulk consentrations of viruses samples we dilluted to Tris-EDTA (pH=8,0) buffer to a final sollution of 1/5 to 1/100. Total abundance and nucleid content classes were calculated using the Paint-A-Gate software (Becton Dickinson). Abundance data were converted into C biomass using 250 fgC cell-1 (Kana & Glibert 1987) for Synechococcus, 50 fgC cell-1 (Campbell et al. 1994) for Prochlorococcus and 20fgC cell-1 (Lee & Fuhrman 1987) for heterotrophic bacteria. Heterotrophic Nanoflagellate biomass: Subsamples (30-150 ml) were concentrated on 25mm black polycarbonate filters of porosity 0.6µm and stained with DAPI for 10 min (Porter and Feig 1980). Under epifluorescence microscopy heterotrophic nanoflagellates (HNAN) were distinguished using UV and blue excitation and enumerated. Nanoflagellates were classified in size categories and the biovolume was calculated. Abundance data were converted into C biomass using 183 fgC µm**3 (Caron et al. 1995). Ciliate biomass: For ciliate identification and enumeration, 100-3000 ml samples were left for 24h-4d for sedimentation and then observed under an inverted microscope. Ciliates were counted, distinguished into size-classes and major taxonomic groups and identified down to genus or species level where possible (Pitta et al. 2005). Ciliate cell sizes were measured and converted into cell volumes using appropriate geometric formulae using image analysis. For biomass estimation, the conversion factor 190 fgC µm**3 was used (Putt and Stoecker 1989).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative paleointensity (RPI) method assumes that the intensity of post depositional remanent magnetization (PDRM) depends exclusively on the magnetic field strength and the concentration of the magnetic carriers. Sedimentary remanence is regarded as an equilibrium state between aligning geomagnetic and randomizing interparticle forces. Just how strong these mechanical and electrostatic forces are, depends on many petrophysical factors related to mineralogy, particle size and shape of the matrix constituents. We therefore test the hypothesis that variations in sediment lithology modulate RPI records. For 90 selected Late Quaternary sediment samples from the subtropical and subantarctic South Atlantic Ocean a combined paleomagnetic and sedimentological dataset was established. Misleading alterations of the magnetic mineral fraction were detected by a routine Fe/kappa test (Funk, J., von Dobeneck, T., Reitz, A., 2004. Integrated rock magnetic and geochemical quantification of redoxomorphic iron mineral diagenesis in Late Quaternary sediments from the Equatorial Atlantic. In: Wefer, G., Mulitza, S., Ratmeyer, V. (Eds.), The South Atlantic in the Late Quaternary: reconstruction of material budgets and current systems. Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, pp. 239-262). Samples with any indication of suboxic magnetite dissolution were excluded from the dataset. The parameters under study include carbonate, opal and terrigenous content, grain size distribution and clay mineral composition. Their bi- and multivariate correlations with the RPI signal were statistically investigated using standard techniques and criteria. While several of the parameters did not yield significant results, clay grain size and chlorite correlate weakly and opal, illite and kaolinite correlate moderately to the NRM/ARM signal used here as a RPI measure. The most influential single sedimentological factor is the kaolinite/illite ratio with a Pearson's coefficient of 0.51 and 99.9% significance. A three-member regression model suggests that matrix effects can make up over 50% of the observed RPI dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objectives of this study are (1) to characterize the spatial and temporal variations in organic matter deposited in upwelling and related sediments (manifest in the palynoclast and organic-walled microplankton assemblages) and (2) to relate these variations to paleoenvironmental changes. A total of 40 samples from Holes 679D, 680B, 681B, 684B, 686B, and 687B were analyzed. Without exception, amorphogen dominates the palynoclast assemblages overwhelmingly. Influx of terrestrial particulate organic matter to the marine realm was extremely low. Levels of amorphogen swamp other palynoclast categories, and little significance can be attached to any variations observed. Microplankton dominate the palynomorph assemblages, with variable levels of subordinate foraminiferal test linings. Miospores are rare and are absent in most samples. Foraminiferal test linings are particularly abundant in the shallowest samples, which may reflect low surface-water paleotemperatures. Cysts of heterotrophic peridiniacean dinoflagellates (P-cysts) dominate the microplankton assemblages, with variable levels of cysts of autotrophic gonyaulacacean dinoflagellates (G-cysts). Samples dominated by P-cysts are derived largely from laminated, unbioturbated units deposited under the influence of strong upwelling. A lower abundance of P-cysts in some samples is restricted to unlaminated, bioturbated units deposited under oxygenated conditions. We conclude that the ratio of P-cysts to G-cysts is a useful indicator of variable upwelling strength. Detailed study of the variations in the microplankton assemblages offers one the greatest potential for palynological characteriztion and understanding of the upwelling system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coral reef maps at various spatial scales and extents are needed for mapping, monitoring, modelling, and management of these environments. High spatial resolution satellite imagery, pixel <10 m, integrated with field survey data and processed with various mapping approaches, can provide these maps. These approaches have been accurately applied to single reefs (10-100 km**2), covering one high spatial resolution scene from which a single thematic layer (e.g. benthic community) is mapped. This article demonstrates how a hierarchical mapping approach can be applied to coral reefs from individual reef to reef-system scales (10-1000 km**2) using object-based image classification of high spatial resolution images guided by ecological and geomorphological principles. The approach is demonstrated for three individual reefs (10-35 km**2) in Australia, Fiji, and Palau; and for three complex reef systems (300-600 km**2) one in the Solomon Islands and two in Fiji. Archived high spatial resolution images were pre-processed and mosaics were created for the reef systems. Georeferenced benthic photo transect surveys were used to acquire cover information. Field and image data were integrated using an object-based image analysis approach that resulted in a hierarchically structured classification. Objects were assigned class labels based on the dominant benthic cover type, or location-relevant ecological and geomorphological principles, or a combination thereof. This generated a hierarchical sequence of reef maps with an increasing complexity in benthic thematic information that included: 'reef', 'reef type', 'geomorphic zone', and 'benthic community'. The overall accuracy of the 'geomorphic zone' classification for each of the six study sites was 76-82% using 6-10 mapping categories. For 'benthic community' classification, the overall accuracy was 52-75% with individual reefs having 14-17 categories and reef systems 20-30 categories. We show that an object-based classification of high spatial resolution imagery, guided by field data and ecological and geomorphological principles, can produce consistent, accurate benthic maps at four hierarchical spatial scales for coral reefs of various sizes and complexities.