40 resultados para IRON-PROJECT
em Publishing Network for Geoscientific
Resumo:
Recycling of oceanic crust into the deep mantle via subduction is a widely accepted mechanism for creating compositional heterogeneity in the upper mantle and for explaining the distinct geochemistry of mantle plumes. The oxygen isotope ratios (d18O) of some ocean island basalts (OIB) span values both above and below that of unmetasomatised upper mantle (5.5 ± 0.4 per mil) and provide support for this hypothesis, as it is widely assumed that most variations in d18O are produced by near-surface low-temperature processes. Here we show a significant linear relationship between d18O and stable iron isotope ratios (d57Fe) in a suite of pristine eclogite xenoliths. The d18O values of both bulk samples and garnets range from values within error of normal mantle to significantly lighter values. The observed range and correlation between d18O and d57Fe is unlikely to be inherited from oceanic crust, as d57Fe values determined for samples of hydrothermally altered oceanic crust do not differ significantly from the mantle value and show no correlation with d18O. It is proposed that the correlated d57Fe and d18O variations in this particular eclogite suite are predominantly related to isotopic fractionation by disequilibrium partial melting although modification by melt percolation processes cannot be ruled out. Fractionation of Fe and O isotopes by removal of partial melt enriched in isotopically heavy Fe and O is supported by negative correlations between bulk sample d57Fe and Cr content and bulk sample and garnet d18O and Sc contents, as Cr and Sc are elements that become enriched in garnet- and pyroxene-bearing melt residues. Melt extraction could take place either during subduction, where the eclogites represent the residues of melted oceanic lithosphere, or could take place during long-term residence within the lithospheric mantle, in which case the protoliths of the eclogites could be of either crustal or mantle origin. This modification of both d57Fe and d18O by melting processes and specifically the production of low-d18O signatures in mafic rocks implies that some of the isotopically light d18O values observed in OIB and eclogite xenoliths may not necessarily reflect near-surface processes or components.
Resumo:
Little is known concerning the effect of CO2 on phytoplankton ecophysiological processes under nutrient and trace element-limited conditions, because most CO2 manipulation experiments have been conducted under elements-replete conditions. To investigate the effects of CO2 and iron availability on phytoplankton ecophysiology, we conducted an experiment in September 2009 using a phytoplankton community in the iron limited, high-nutrient, low-chlorophyll (HNLC) region of the Bering Sea basin . Carbonate chemistry was controlled by the bubbling of the several levels of CO2 concentration (180, 380, 600, and 1000 ppm) controlled air, and two iron conditions were established, one with and one without the addition of inorganic iron. We demonstrated that in the iron-limited control conditions, the specific growth rate and the maximum photochemical quantum efficiency (Fv/Fm) of photosystem (PS) II decreased with increasing CO2 levels, suggesting a further decrease in iron bioavailability under the high-CO2 conditions. In addition, biogenic silica to particulate nitrogen and biogenic silica to particulate organic carbon ratios increased from 2.65 to 3.75 and 0.39 to 0.50, respectively, with an increase in the CO2 level in the iron-limited controls. By contrast, the specific growth rate, Fv/Fm values and elemental compositions in the iron-added treatments did not change in response to the CO2 variations, indicating that the addition of iron canceled out the effect of the modulation of iron bioavailability due to the change in carbonate chemistry. Our results suggest that high-CO2 conditions can alter the biogeochemical cycling of nutrients through decreasing iron bioavailability in the iron-limited HNLC regions in the future.
Resumo:
On Leg 96 of the Deep Sea Drilling Project (DSDP), holes were drilled in Orca and Pigmy basins on the northern Gulf of Mexico continental slope and on the Mississippi Fan. The holes on the fan encountered interbedded sand, silt, and mud deposited extremely rapidly, most during late Wisconsin glacial time. Pore-water chemistry in these holes is variable, but does not follow lithologic changes in any simple way. Both Ca and SO4 are enriched in the pore water of many samples from the fan. Two sites drilled in the prominent central channel of the middle fan show rapid SO4 reduction with depth, whereas two nearby sites in overbank deposits show no sulfate reduction for 300 m. Calcium concentration decreases as SO4 is depleted and Li follows the same pattern. Strontium, which like Li, is enriched in samples enriched in Ca, does not decrease with SO4 and Ca. Potassium in the pore water decreases with depth at almost all sites. Sulfate reduction was active at the two basin sites and, as on the fan, this resulted in calcium carbonate precipitation and a lowering of pore water Ca, Mg, and Li. The Orca Basin site was drilled through a brine pool of 258? salinity. Pore-water salinity decreases smoothly with depth to 50 m and remains well above normal seawater values to the bottom of the hole at about 90 m. This suggests constant sedimentation under anoxic hypersaline conditions for at least the last 50,000 yr.
Resumo:
We present a detailed study of the co-diagenesis of Fe and P in hydrothermal plume fallout sediments from ~19°S on the southern East Pacific Rise. Three distal sediment cores from 340-1130 km from the ridge crest, collected during DSDP Leg 92, were analysed for solid phase Fe and P associations using sequential chemical extraction techniques. The sediments at all sites are enriched in hydrothermal Fe (oxyhydr)oxides, but during diagenesis a large proportion of the primary ferrihydrite precipitates are transformed to the more stable mineral form of goethite and to a lesser extent to clay minerals, resulting in the release to solution of scavenged P. However, a significant proportion of this P is retained within the sediment, by incorporation into secondary goethite, by precipitation as authigenic apatite, and by readsorption to Fe (oxyhydr)oxides. Molar P/Fe ratios for these sediments are significantly lower than those measured in plume particles from more northern localities along the southern East Pacific Rise, and show a distinct downcore decrease to a depth of ~12 m. Molar P/Fe ratios are then relatively constant to a depth of ~35 m. The Fe and P speciation data indicate that diagenetic modification of the sediments is largely complete by a depth of 2.5 m, and thus depth trends in molar P/Fe ratios can not solely be explained by losses of P from the sediment by diffusion to the overlying water column during early diagenesis. Instead, these sediments are likely recording changes in dissolved P concentrations off the SEPR, possibly as a result of redistribution of nutrients in response to changes in oceanic circulation over the last 10 million years. Furthermore, the relatively low molar P/Fe ratios observed throughout these sediments are not necessarily solely due to losses of scavenged P by diffusion to the overlying water column during diagenesis, but may also reflect post-depositional oxidation of pyrite originating from the volatile-rich vents of the southern East Pacific Rise. This study suggests that the molar P/Fe ratio of oxic Fe-rich sediments may serve as a proxy of relative changes in paleoseawater phosphate concentrations, particularly if Fe sulfide minerals are not an important component during transport and deposition.
Resumo:
he global carbon cycle during the mid-Cretaceous (~125-88 million years ago, Ma) experienced numerous major perturbations linked to increased organic carbon burial under widespread, possibly basin-scale oxygen deficiency and episodes of euxinia (anoxic and H2S-containing). The largest of these episodes, the Cenomanian-Turonian boundary event (ca. 93.5 Ma), or oceanic anoxic event (OAE) 2, was marked by pervasive deposition of organic-rich, laminated black shales in deep waters and in some cases across continental shelves. This deposition is recorded in a pronounced positive carbon isotope excursion seen ubiquitously in carbonates and organic matter. Enrichments of redox-sensitive, often bioessential trace metals, including Fe and Mo, indicate major shifts in their biogeochemical cycles under reducing conditions that may be linked to changes in primary production. Iron enrichments and bulk Fe isotope compositions track the sources and sinks of Fe in the proto-North Atlantic at seven localities marked by diverse depositional conditions. Included are an ancestral mid-ocean ridge and euxinic, intermittently euxinic, and oxic settings across varying paleodepths throughout the basin. These data yield evidence for a reactive Fe shuttle that likely delivered Fe from the shallow shelf to the deep ocean basin, as well as (1) hydrothermal sources enhanced by accelerated seafloor spreading or emplacement of large igneous province(s) and (2) local-scale Fe remobilization within the sediment column. This study, the first to explore Fe cycling and enrichment patterns on an ocean scale using iron isotope data, demonstrates the complex processes operating on this scale that can mask simple source-sink relationships. The data imply that the proto-North Atlantic received elevated Fe inputs from several sources (e.g., hydrothermal, shuttle and detrital inputs) and that the redox state of the basin was not exclusively euxinic, suggesting previously unknown heterogeneity in depositional conditions and biogeochemical cycling within those settings during OAE-2.
Resumo:
Iron availability in seawater, namely the concentration of dissolved inorganic iron ([Fe']), is affected by changes in pH. Such changes in the availability of iron should be taken into account when investigating the effects of ocean acidification on phytoplankton ecophysiology because iron plays a key role in phytoplankton metabolism. However, changes in iron availability in response to changes in ocean acidity are difficult to quantify specifically using natural seawater because these factors change simultaneously. In the present study, the availability of iron and carbonate chemistry were manipulated individually and simultaneously in the laboratory to examine the effect of each factor on phytoplankton ecophysiology. The effects of various pCO2 conditions (390, 600, and 800 µatm) on the growth, cell size, and elemental stoichiometry (carbon [C], nitrogen [N], phosphorus [P], and silicon [Si]) of the diatom Thalassiosira weissflogii under high iron ([Fe'] = 240 pmol/l) and low iron ([Fe'] = 24 pmol/l) conditions were investigated. Cell volume decreased with increasing pCO2, whereas intracellular C, N, and P concentrations increased with increasing pCO2 only under high iron conditions. Si:C, Si:N, and Si:P ratios decreased with increasing pCO2. It reflects higher production of net C, N, and P with no corresponding change in net Si production under high pCO2 and high iron conditions. In contrast, significant linear relationships between measured parameters and pCO2 were rarely detected under low iron conditions. We conclude that the increasing CO2 levels could affect on the biogeochemical cycling of bioelements selectively under the iron-replete conditions in the coastal ecosystems.
Resumo:
Partial pressure of CO2 (pCO2) and iron availability in seawater show corresponding changes due to biological and anthropogenic activities. The simultaneous change in these factors precludes an understanding of their independent effects on the ecophysiology of phytoplankton. In addition, there is a lack of data regarding the interactive effects of these factors on phytoplankton cellular stoichiometry, which is a key driving factor for the biogeochemical cycling of oceanic nutrients. Here, we investigated the effects of pCO2 and iron availability on the elemental composition (C, N, P, and Si) of the diatom Pseudo-nitzschia pseudodelicatissima (Hasle) Hasle by dilute batch cultures under 4 pCO2 (~200, ~380, ~600, and ~800 µatm) and five dissolved inorganic iron (Fe'; ~5, ~10, ~20, ~50, and ~100 pmol /L) conditions. Our experimental procedure successfully overcame the problems associated with simultaneous changes in pCO2 and Fe' by independently manipulating carbonate chemistry and iron speciation, which allowed us to evaluate the individual effects of pCO2 and iron availability. We found that the C:N ratio decreased significantly only with an increase in Fe', whereas the C:P ratio increased significantly only with an increase in pCO2. Both Si:C and Si:N ratios decreased with increasing pCO2 and Fe'. Our results indicate that changes in pCO2 and iron availability could influence the biogeochemical cycling of nutrients in future oceans with high- CO2 levels, and, similarly, during the time course of phytoplankton blooms. Moreover, pCO2 and iron availability may also have affected oceanic nutrient biogeochemistry in the past, as these conditions have changed markedly over the Earth's history.
Resumo:
The potential interactive effects of iron (Fe) limitation and Ocean Acidification in the Southern Ocean (SO) are largely unknown. Here we present results of a long-term incubation experiment investigating the combined effects of CO2 and Fe availability on natural phytoplankton assemblages from the Weddell Sea, Antarctica. Active Chl a fluorescence measurements revealed that we successfully cultured phytoplankton under both Fe-depleted and Fe-enriched conditions. Fe treatments had significant effects on photosynthetic efficiency (Fv/Fm; 0.3 for Fe-depleted and 0.5 for Fe-enriched conditions), non-photochemical quenching (NPQ), and relative electron transport rates (rETR). pCO2 treatments significantly affected NPQ and rETR, but had no effect on Fv/Fm. Under Fe limitation, increased pCO2 had no influence on C fixation whereas under Fe enrichment, primary production increased with increasing pCO2 levels. These CO2-dependent changes in productivity under Fe-enriched conditions were accompanied by a pronounced taxonomic shift from weakly to heavily silicified diatoms (i.e. from Pseudo-nitzschia sp. to Fragilariopsis sp.). Under Fe-depleted conditions, this functional shift was absent and thinly silicified species dominated all pCO2 treatments (Pseudo-nitzschia sp. and Synedropsis sp. for low and high pCO2, respectively). Our results suggest that Ocean Acidification could increase primary productivity and the abundance of heavily silicified, fast sinking diatoms in Fe-enriched areas, both potentially leading to a stimulation of the biological pump. Over much of the SO, however, Fe limitation could restrict this possible CO2 fertilization effect.
Resumo:
Sulfur phases in the Argentine Basin.
Resumo:
Sediment samples collected at DSDP Leg 96 Mississippi Fan Sites 615, 616, 620, 621, and 623, Orca Basin Site 618, and Pigmy Basin Site 619 were analyzed for 22 major, minor, and trace elements. This study was undertaken to document the downhole variability in inorganic geochemistry between sites. The mineralogy of the clays, including those from Sites 614, 617, and 622 on the fan, was determined by X-ray diffraction to define the principal clay minerals present at the sites, examine any downhole trends in clay mineralogy, and aid in the interpretation of the geochemical signature of the sediments. Clay mineral composition at all the sites is smectite:illite:chlorite:kaolinite in the approximate percentage ratio 50:20:20:10. Geochemical results indicate only slight variation between and within the sites, with the exception of a discrete unit of carbonates that occurs near the bottom of Site 615. Variation in the major, minor, and trace element composition can be explained by a change in the relative abundance of quartz, clay minerals, and carbonates.